Cargando…
Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants
In this study, a low-cost cementitious microfiltration membrane (CM) with a catalytic ozone oxidation function for the removal of organic pollutants was fabricated by using cementitious and C-10 μm silica powders at a certain silica–cementitious particle ratio (s/c). The effect of the s/c on the por...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307055/ https://www.ncbi.nlm.nih.gov/pubmed/34357182 http://dx.doi.org/10.3390/membranes11070532 |
_version_ | 1783727959039803392 |
---|---|
author | Sun, Jingyi Liu, Shan Kang, Jing Chen, Zhonglin Cai, Liming Guo, Yuhao Shen, Jimin Wang, Zhe |
author_facet | Sun, Jingyi Liu, Shan Kang, Jing Chen, Zhonglin Cai, Liming Guo, Yuhao Shen, Jimin Wang, Zhe |
author_sort | Sun, Jingyi |
collection | PubMed |
description | In this study, a low-cost cementitious microfiltration membrane (CM) with a catalytic ozone oxidation function for the removal of organic pollutants was fabricated by using cementitious and C-10 μm silica powders at a certain silica–cementitious particle ratio (s/c). The effect of the s/c on the pore size distribution and mechanical strength of the membrane was investigated. The membrane pore size showed a bimodal distribution, and the higher the s/c, the closer the second peak was to the accumulated average particle size of silica. The increase in the s/c led to a decrease in the bending strength of the membrane. The cross-sectional morphology by SEM and crystal structure by XRD of CMs confirmed that a calcium silicate hydrate gel was generated around the silica powder to improve the mechanical strength of the CM. Considering the bending strength and pore size distribution of CMs, s/c = 0.5 was selected as the optimal membrane fabrication condition. The FT-IR results characterizing the surface functional groups of CMs were rich in surface hydroxyl groups with the ability to catalyze ozone oxidation for organic pollutant removal. Six small molecule organic pollutants were selected as model compounds for the efficiency experiments via a CM–ozone coupling process to prove the catalytic property of the CM. The CM has an alkaline buffering effect and can stabilize the initial pH of the solution in the catalytic ozonation process. The reuse experiments of the CM–ozone coupling process demonstrated the broad spectrum of the CM catalytic performance and self-cleaning properties. The results of this study provide the basis and experimental support to expand the practical application of CMs. |
format | Online Article Text |
id | pubmed-8307055 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83070552021-07-25 Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants Sun, Jingyi Liu, Shan Kang, Jing Chen, Zhonglin Cai, Liming Guo, Yuhao Shen, Jimin Wang, Zhe Membranes (Basel) Article In this study, a low-cost cementitious microfiltration membrane (CM) with a catalytic ozone oxidation function for the removal of organic pollutants was fabricated by using cementitious and C-10 μm silica powders at a certain silica–cementitious particle ratio (s/c). The effect of the s/c on the pore size distribution and mechanical strength of the membrane was investigated. The membrane pore size showed a bimodal distribution, and the higher the s/c, the closer the second peak was to the accumulated average particle size of silica. The increase in the s/c led to a decrease in the bending strength of the membrane. The cross-sectional morphology by SEM and crystal structure by XRD of CMs confirmed that a calcium silicate hydrate gel was generated around the silica powder to improve the mechanical strength of the CM. Considering the bending strength and pore size distribution of CMs, s/c = 0.5 was selected as the optimal membrane fabrication condition. The FT-IR results characterizing the surface functional groups of CMs were rich in surface hydroxyl groups with the ability to catalyze ozone oxidation for organic pollutant removal. Six small molecule organic pollutants were selected as model compounds for the efficiency experiments via a CM–ozone coupling process to prove the catalytic property of the CM. The CM has an alkaline buffering effect and can stabilize the initial pH of the solution in the catalytic ozonation process. The reuse experiments of the CM–ozone coupling process demonstrated the broad spectrum of the CM catalytic performance and self-cleaning properties. The results of this study provide the basis and experimental support to expand the practical application of CMs. MDPI 2021-07-14 /pmc/articles/PMC8307055/ /pubmed/34357182 http://dx.doi.org/10.3390/membranes11070532 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sun, Jingyi Liu, Shan Kang, Jing Chen, Zhonglin Cai, Liming Guo, Yuhao Shen, Jimin Wang, Zhe Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants |
title | Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants |
title_full | Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants |
title_fullStr | Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants |
title_full_unstemmed | Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants |
title_short | Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants |
title_sort | fabrication of cementitious microfiltration membrane and its catalytic ozonation for the removal of small molecule organic pollutants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307055/ https://www.ncbi.nlm.nih.gov/pubmed/34357182 http://dx.doi.org/10.3390/membranes11070532 |
work_keys_str_mv | AT sunjingyi fabricationofcementitiousmicrofiltrationmembraneanditscatalyticozonationfortheremovalofsmallmoleculeorganicpollutants AT liushan fabricationofcementitiousmicrofiltrationmembraneanditscatalyticozonationfortheremovalofsmallmoleculeorganicpollutants AT kangjing fabricationofcementitiousmicrofiltrationmembraneanditscatalyticozonationfortheremovalofsmallmoleculeorganicpollutants AT chenzhonglin fabricationofcementitiousmicrofiltrationmembraneanditscatalyticozonationfortheremovalofsmallmoleculeorganicpollutants AT cailiming fabricationofcementitiousmicrofiltrationmembraneanditscatalyticozonationfortheremovalofsmallmoleculeorganicpollutants AT guoyuhao fabricationofcementitiousmicrofiltrationmembraneanditscatalyticozonationfortheremovalofsmallmoleculeorganicpollutants AT shenjimin fabricationofcementitiousmicrofiltrationmembraneanditscatalyticozonationfortheremovalofsmallmoleculeorganicpollutants AT wangzhe fabricationofcementitiousmicrofiltrationmembraneanditscatalyticozonationfortheremovalofsmallmoleculeorganicpollutants |