Cargando…
Qualitative Data Clustering to Detect Outliers
Detecting outliers is a widely studied problem in many disciplines, including statistics, data mining, and machine learning. All anomaly detection activities are aimed at identifying cases of unusual behavior compared to most observations. There are many methods to deal with this issue, which are ap...
Autores principales: | Nowak-Brzezińska, Agnieszka, Łazarz, Weronika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307081/ https://www.ncbi.nlm.nih.gov/pubmed/34356410 http://dx.doi.org/10.3390/e23070869 |
Ejemplares similares
-
How the Outliers Influence the Quality of Clustering?
por: Nowak-Brzezińska, Agnieszka, et al.
Publicado: (2022) -
Outliers in Covid 19 data based on Rule representation - the analysis of LOF algorithm
por: Brzezińska, Agnieszka Nowak, et al.
Publicado: (2021) -
Exploration of Outliers in If-Then Rule-Based Knowledge Bases
por: Nowak-Brzezińska, Agnieszka, et al.
Publicado: (2020) -
Outlier detection: a data mining perspective
por: Ranga Suri, N N R, et al.
Publicado: (2019) -
Detecting Outlier Microarray Arrays by Correlation and Percentage of Outliers Spots
por: Yang, Song, et al.
Publicado: (2007)