Cargando…
Reply to Jue et al. Value of MRI to Improve Deep Learning Model That Identifies High-Grade Prostate Cancer. Comment on “Gentile et al. Optimized Identification of High-Grade Prostate Cancer by Combining Different PSA Molecular Forms and PSA Density in a Deep Learning Model. Diagnostics 2021, 11, 335”
Autores principales: | Gentile, Francesco, Ferro, Matteo, Della Ventura, Bartolomeo, La Civita, Evelina, Liotti, Antonietta, Cennamo, Michele, Bruzzese, Dario, Velotta, Raffaele, Terracciano, Daniela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307083/ https://www.ncbi.nlm.nih.gov/pubmed/34359297 http://dx.doi.org/10.3390/diagnostics11071214 |
Ejemplares similares
-
Optimized Identification of High-Grade Prostate Cancer by Combining Different PSA Molecular Forms and PSA Density in a Deep Learning Model
por: Gentile, Francesco, et al.
Publicado: (2021) -
Value of MRI to Improve Deep Learning Model That Identifies High-Grade Prostate Cancer. Comment on Gentile et al. Optimized Identification of High-Grade Prostate Cancer by Combining Different PSA Molecular Forms and PSA Density in a Deep Learning Model. Diagnostics 2021, 11, 335
por: Jue, Joshua S., et al.
Publicado: (2021) -
A Neural Network Model Combining [-2]proPSA, freePSA, Total PSA, Cathepsin D, and Thrombospondin-1 Showed Increased Accuracy in the Identification of Clinically Significant Prostate Cancer
por: Gentile, Francesco, et al.
Publicado: (2023) -
Reply to Jue, J.S.; Alameddine, M. Role of PSA Density and MRI in PSA Interpretation. Comment on “Lumbreras et al. Variables Associated with False-Positive PSA Results: A Cohort Study with Real-World Data. Cancers 2023, 15, 261”
por: Lumbreras, Blanca, et al.
Publicado: (2023) -
Urinary PSA and Serum PSA for Aggressive Prostate Cancer Detection
por: Höti, Naseruddin, et al.
Publicado: (2023)