Cargando…
RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints
Ribo-seq, also known as ribosome profiling, refers to the sequencing of ribosome-protected mRNA fragments (RPFs). This technique has greatly advanced our understanding of translation and facilitated the identification of novel open reading frames (ORFs) within untranslated regions or non-coding sequ...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307163/ https://www.ncbi.nlm.nih.gov/pubmed/34357073 http://dx.doi.org/10.3390/life11070701 |
_version_ | 1783727984692166656 |
---|---|
author | Song, Bo Jiang, Mengyun Gao, Lei |
author_facet | Song, Bo Jiang, Mengyun Gao, Lei |
author_sort | Song, Bo |
collection | PubMed |
description | Ribo-seq, also known as ribosome profiling, refers to the sequencing of ribosome-protected mRNA fragments (RPFs). This technique has greatly advanced our understanding of translation and facilitated the identification of novel open reading frames (ORFs) within untranslated regions or non-coding sequences as well as the identification of non-canonical start codons. However, the widespread application of Ribo-seq has been hindered because obtaining periodic RPFs requires a highly optimized protocol, which may be difficult to achieve, particularly in non-model organisms. Furthermore, the periodic RPFs are too short (28 nt) for accurate mapping to polyploid genomes, but longer RPFs are usually produced with a compromise in periodicity. Here we present RiboNT, a noise-tolerant ORF predictor that can utilize RPFs with poor periodicity. It evaluates RPF periodicity and automatically weighs the support from RPFs and codon usage before combining their contributions to identify translated ORFs. The results demonstrate the utility of RiboNT for identifying both long and small ORFs using RPFs with either good or poor periodicity. We implemented the pipeline on a dataset of RPFs with poor periodicity derived from membrane-bound polysomes of Arabidopsis thaliana seedlings and identified several small ORFs (sORFs) evolutionarily conserved in diverse plant species. RiboNT should greatly broaden the application of Ribo-seq by minimizing the requirement of RPF quality and allowing the use of longer RPFs, which is critical for organisms with complex genomes because these RPFs can be more accurately mapped to the position from which they were derived. |
format | Online Article Text |
id | pubmed-8307163 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83071632021-07-25 RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints Song, Bo Jiang, Mengyun Gao, Lei Life (Basel) Article Ribo-seq, also known as ribosome profiling, refers to the sequencing of ribosome-protected mRNA fragments (RPFs). This technique has greatly advanced our understanding of translation and facilitated the identification of novel open reading frames (ORFs) within untranslated regions or non-coding sequences as well as the identification of non-canonical start codons. However, the widespread application of Ribo-seq has been hindered because obtaining periodic RPFs requires a highly optimized protocol, which may be difficult to achieve, particularly in non-model organisms. Furthermore, the periodic RPFs are too short (28 nt) for accurate mapping to polyploid genomes, but longer RPFs are usually produced with a compromise in periodicity. Here we present RiboNT, a noise-tolerant ORF predictor that can utilize RPFs with poor periodicity. It evaluates RPF periodicity and automatically weighs the support from RPFs and codon usage before combining their contributions to identify translated ORFs. The results demonstrate the utility of RiboNT for identifying both long and small ORFs using RPFs with either good or poor periodicity. We implemented the pipeline on a dataset of RPFs with poor periodicity derived from membrane-bound polysomes of Arabidopsis thaliana seedlings and identified several small ORFs (sORFs) evolutionarily conserved in diverse plant species. RiboNT should greatly broaden the application of Ribo-seq by minimizing the requirement of RPF quality and allowing the use of longer RPFs, which is critical for organisms with complex genomes because these RPFs can be more accurately mapped to the position from which they were derived. MDPI 2021-07-16 /pmc/articles/PMC8307163/ /pubmed/34357073 http://dx.doi.org/10.3390/life11070701 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Bo Jiang, Mengyun Gao, Lei RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints |
title | RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints |
title_full | RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints |
title_fullStr | RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints |
title_full_unstemmed | RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints |
title_short | RiboNT: A Noise-Tolerant Predictor of Open Reading Frames from Ribosome-Protected Footprints |
title_sort | ribont: a noise-tolerant predictor of open reading frames from ribosome-protected footprints |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307163/ https://www.ncbi.nlm.nih.gov/pubmed/34357073 http://dx.doi.org/10.3390/life11070701 |
work_keys_str_mv | AT songbo ribontanoisetolerantpredictorofopenreadingframesfromribosomeprotectedfootprints AT jiangmengyun ribontanoisetolerantpredictorofopenreadingframesfromribosomeprotectedfootprints AT gaolei ribontanoisetolerantpredictorofopenreadingframesfromribosomeprotectedfootprints |