Cargando…
Geometric Variational Inference
Efficiently accessing the information contained in non-linear and high dimensional probability distributions remains a core challenge in modern statistics. Traditionally, estimators that go beyond point estimates are either categorized as Variational Inference (VI) or Markov-Chain Monte-Carlo (MCMC)...
Autores principales: | Frank, Philipp, Leike, Reimar, Enßlin, Torsten A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307522/ https://www.ncbi.nlm.nih.gov/pubmed/34356394 http://dx.doi.org/10.3390/e23070853 |
Ejemplares similares
-
Dynamical Field Inference and Supersymmetry
por: Westerkamp, Margret, et al.
Publicado: (2021) -
A Bayesian Model for Bivariate Causal Inference
por: Kurthen, Maximilian, et al.
Publicado: (2019) -
Modelling of human torso shape variation inferred by geometric morphometrics
por: Thelwell, Michael, et al.
Publicado: (2022) -
Combinatorial inference in geometric data analysis
por: Le Roux, Brigitte, et al.
Publicado: (2020) -
Probabilistic Autoencoder Using Fisher Information
por: Zacherl, Johannes, et al.
Publicado: (2021)