Cargando…

Observation and Optimization on Garbage Collection of Flash Memories: The View in Performance Cliff

The recent development of 3D flash memories has promoted the widespread application of SSDs in modern storage systems by providing large storage capacity and low cost. Garbage collection (GC) as a time-consuming but necessary operation in flash memories largely affects the performance. In this paper...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Yajuan, Liu, Wei, Gao, Yuan, Ausavarungnirun, Rachata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307601/
https://www.ncbi.nlm.nih.gov/pubmed/34357256
http://dx.doi.org/10.3390/mi12070846
Descripción
Sumario:The recent development of 3D flash memories has promoted the widespread application of SSDs in modern storage systems by providing large storage capacity and low cost. Garbage collection (GC) as a time-consuming but necessary operation in flash memories largely affects the performance. In this paper, we perform a comprehensive experimental study on how garbage collection impacts the performance of flash-based SSDs, in the view of performance cliff that closely relates to Quality of Service (QoS). According to the study results using real-world workloads, we first observe that GC occasionally causes response time spikes, which we call the performance cliff problem. Then, we find that 3D SSDs exacerbate the situation by inducing a much higher number of page migrations during GC. To relieve the performance cliff problem, we propose PreGC to assist normal GC. The key idea is to distribute the page migrations into the period before normal GC, thus leading to a reduction in page migrations during the GC period. Comprehensive experiments with real-world workloads have been performed on the SSDsim simulator. Experimental results show that PreGC can efficiently relieve the performance cliff by reducing the tail latency from the 90th to 99.99th percentiles while inducing a little extra write amplification.