Cargando…
Overriding native cell coordination enhances external programming of collective cell migration
As collective cell migration is essential in biological processes spanning development, healing, and cancer progression, methods to externally program cell migration are of great value. However, problems can arise if the external commands compete with strong, preexisting collective behaviors in the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307614/ https://www.ncbi.nlm.nih.gov/pubmed/34272284 http://dx.doi.org/10.1073/pnas.2101352118 |
_version_ | 1783728089797230592 |
---|---|
author | Shim, Gawoon Devenport, Danelle Cohen, Daniel J. |
author_facet | Shim, Gawoon Devenport, Danelle Cohen, Daniel J. |
author_sort | Shim, Gawoon |
collection | PubMed |
description | As collective cell migration is essential in biological processes spanning development, healing, and cancer progression, methods to externally program cell migration are of great value. However, problems can arise if the external commands compete with strong, preexisting collective behaviors in the tissue or system. We investigate this problem by applying a potent external migratory cue—electrical stimulation and electrotaxis—to primary mouse skin monolayers where we can tune cell–cell adhesion strength to modulate endogenous collectivity. Monolayers with high cell–cell adhesion showed strong natural coordination and resisted electrotactic control, with this conflict actively damaging the leading edge of the tissue. However, reducing preexisting coordination in the tissue by specifically inhibiting E-cadherin–dependent cell–cell adhesion, either by disrupting the formation of cell–cell junctions with E-cadherin–specific antibodies or rapidly dismantling E-cadherin junctions with calcium chelators, significantly improved controllability. Finally, we applied this paradigm of weakening existing coordination to improve control and demonstrate accelerated wound closure in vitro. These results are in keeping with those from diverse, noncellular systems and confirm that endogenous collectivity should be considered as a key quantitative design variable when optimizing external control of collective migration. |
format | Online Article Text |
id | pubmed-8307614 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-83076142021-07-28 Overriding native cell coordination enhances external programming of collective cell migration Shim, Gawoon Devenport, Danelle Cohen, Daniel J. Proc Natl Acad Sci U S A Biological Sciences As collective cell migration is essential in biological processes spanning development, healing, and cancer progression, methods to externally program cell migration are of great value. However, problems can arise if the external commands compete with strong, preexisting collective behaviors in the tissue or system. We investigate this problem by applying a potent external migratory cue—electrical stimulation and electrotaxis—to primary mouse skin monolayers where we can tune cell–cell adhesion strength to modulate endogenous collectivity. Monolayers with high cell–cell adhesion showed strong natural coordination and resisted electrotactic control, with this conflict actively damaging the leading edge of the tissue. However, reducing preexisting coordination in the tissue by specifically inhibiting E-cadherin–dependent cell–cell adhesion, either by disrupting the formation of cell–cell junctions with E-cadherin–specific antibodies or rapidly dismantling E-cadherin junctions with calcium chelators, significantly improved controllability. Finally, we applied this paradigm of weakening existing coordination to improve control and demonstrate accelerated wound closure in vitro. These results are in keeping with those from diverse, noncellular systems and confirm that endogenous collectivity should be considered as a key quantitative design variable when optimizing external control of collective migration. National Academy of Sciences 2021-07-20 2021-07-16 /pmc/articles/PMC8307614/ /pubmed/34272284 http://dx.doi.org/10.1073/pnas.2101352118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Biological Sciences Shim, Gawoon Devenport, Danelle Cohen, Daniel J. Overriding native cell coordination enhances external programming of collective cell migration |
title | Overriding native cell coordination enhances external programming of collective cell migration |
title_full | Overriding native cell coordination enhances external programming of collective cell migration |
title_fullStr | Overriding native cell coordination enhances external programming of collective cell migration |
title_full_unstemmed | Overriding native cell coordination enhances external programming of collective cell migration |
title_short | Overriding native cell coordination enhances external programming of collective cell migration |
title_sort | overriding native cell coordination enhances external programming of collective cell migration |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307614/ https://www.ncbi.nlm.nih.gov/pubmed/34272284 http://dx.doi.org/10.1073/pnas.2101352118 |
work_keys_str_mv | AT shimgawoon overridingnativecellcoordinationenhancesexternalprogrammingofcollectivecellmigration AT devenportdanelle overridingnativecellcoordinationenhancesexternalprogrammingofcollectivecellmigration AT cohendanielj overridingnativecellcoordinationenhancesexternalprogrammingofcollectivecellmigration |