Cargando…
A Machine Learning Model for the Prognosis of Pulseless Electrical Activity during Out-of-Hospital Cardiac Arrest
Pulseless electrical activity (PEA) is characterized by the disassociation of the mechanical and electrical activity of the heart and appears as the initial rhythm in 20–30% of out-of-hospital cardiac arrest (OHCA) cases. Predicting whether a patient in PEA will convert to return of spontaneous circ...
Autores principales: | Urteaga, Jon, Aramendi, Elisabete, Elola, Andoni, Irusta, Unai, Idris, Ahamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307658/ https://www.ncbi.nlm.nih.gov/pubmed/34209405 http://dx.doi.org/10.3390/e23070847 |
Ejemplares similares
-
Towards the Prediction of Rearrest during Out-of-Hospital Cardiac Arrest
por: Elola, Andoni, et al.
Publicado: (2020) -
Deep Neural Networks for ECG-Based Pulse Detection during Out-of-Hospital Cardiac Arrest
por: Elola, Andoni, et al.
Publicado: (2019) -
Pulseless Electrical Activity Cardiac Arrest
por: Sembroski, Erik, et al.
Publicado: (2020) -
Fuzzy and Sample Entropies as Predictors of Patient Survival Using Short Ventricular Fibrillation Recordings during out of Hospital Cardiac Arrest
por: Chicote, Beatriz, et al.
Publicado: (2018) -
Application of ultrasound in pulseless electrical activity (PEA) cardiac arrest
por: Rabiei, Helaleh, et al.
Publicado: (2016)