Cargando…
DLSTM-Based Successive Cancellation Flipping Decoder for Short Polar Codes
Polar code has been adopted as the control channel coding scheme for the fifth generation (5G), and the performance of short polar codes is receiving intensive attention. The successive cancellation flipping (SC flipping) algorithm suffers a significant performance loss in short block lengths. To ad...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307723/ https://www.ncbi.nlm.nih.gov/pubmed/34356404 http://dx.doi.org/10.3390/e23070863 |
_version_ | 1783728114606538752 |
---|---|
author | Cui, Jianming Kong, Wenxiu Zhang, Xiaojun Chen, Da Zeng, Qingtian |
author_facet | Cui, Jianming Kong, Wenxiu Zhang, Xiaojun Chen, Da Zeng, Qingtian |
author_sort | Cui, Jianming |
collection | PubMed |
description | Polar code has been adopted as the control channel coding scheme for the fifth generation (5G), and the performance of short polar codes is receiving intensive attention. The successive cancellation flipping (SC flipping) algorithm suffers a significant performance loss in short block lengths. To address this issue, we propose a double long short-term memory (DLSTM) neural network to locate the first error bit. To enhance the prediction accuracy of the DLSTM network, all frozen bits are clipped in the output layer. Then, Gaussian approximation is applied to measure the channel reliability and rank the flipping set to choose the least reliable position for multi-bit flipping. To be robust under different codewords, padding and masking strategies aid the network architecture to be compatible with multiple block lengths. Numerical results indicate that the error-correction performance of the proposed algorithm is competitive with that of the CA-SCL algorithm. It has better performance than the machine learning-based multi-bit flipping SC (ML-MSCF) decoder and the dynamic SC flipping (DSCF) decoder for short polar codes. |
format | Online Article Text |
id | pubmed-8307723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83077232021-07-25 DLSTM-Based Successive Cancellation Flipping Decoder for Short Polar Codes Cui, Jianming Kong, Wenxiu Zhang, Xiaojun Chen, Da Zeng, Qingtian Entropy (Basel) Article Polar code has been adopted as the control channel coding scheme for the fifth generation (5G), and the performance of short polar codes is receiving intensive attention. The successive cancellation flipping (SC flipping) algorithm suffers a significant performance loss in short block lengths. To address this issue, we propose a double long short-term memory (DLSTM) neural network to locate the first error bit. To enhance the prediction accuracy of the DLSTM network, all frozen bits are clipped in the output layer. Then, Gaussian approximation is applied to measure the channel reliability and rank the flipping set to choose the least reliable position for multi-bit flipping. To be robust under different codewords, padding and masking strategies aid the network architecture to be compatible with multiple block lengths. Numerical results indicate that the error-correction performance of the proposed algorithm is competitive with that of the CA-SCL algorithm. It has better performance than the machine learning-based multi-bit flipping SC (ML-MSCF) decoder and the dynamic SC flipping (DSCF) decoder for short polar codes. MDPI 2021-07-06 /pmc/articles/PMC8307723/ /pubmed/34356404 http://dx.doi.org/10.3390/e23070863 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cui, Jianming Kong, Wenxiu Zhang, Xiaojun Chen, Da Zeng, Qingtian DLSTM-Based Successive Cancellation Flipping Decoder for Short Polar Codes |
title | DLSTM-Based Successive Cancellation Flipping Decoder for Short Polar Codes |
title_full | DLSTM-Based Successive Cancellation Flipping Decoder for Short Polar Codes |
title_fullStr | DLSTM-Based Successive Cancellation Flipping Decoder for Short Polar Codes |
title_full_unstemmed | DLSTM-Based Successive Cancellation Flipping Decoder for Short Polar Codes |
title_short | DLSTM-Based Successive Cancellation Flipping Decoder for Short Polar Codes |
title_sort | dlstm-based successive cancellation flipping decoder for short polar codes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307723/ https://www.ncbi.nlm.nih.gov/pubmed/34356404 http://dx.doi.org/10.3390/e23070863 |
work_keys_str_mv | AT cuijianming dlstmbasedsuccessivecancellationflippingdecoderforshortpolarcodes AT kongwenxiu dlstmbasedsuccessivecancellationflippingdecoderforshortpolarcodes AT zhangxiaojun dlstmbasedsuccessivecancellationflippingdecoderforshortpolarcodes AT chenda dlstmbasedsuccessivecancellationflippingdecoderforshortpolarcodes AT zengqingtian dlstmbasedsuccessivecancellationflippingdecoderforshortpolarcodes |