Cargando…
Supercritical Fluid Extraction Kinetics of Cherry Seed Oil: Kinetics Modeling and ANN Optimization
This study was primarily focused on the supercritical fluid extraction (SFE) of cherry seed oil and the optimization of the process using sequential extraction kinetics modeling and artificial neural networks (ANN). The SFE study was organized according to Box-Behnken design of experiment, with addi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307763/ https://www.ncbi.nlm.nih.gov/pubmed/34209239 http://dx.doi.org/10.3390/foods10071513 |
Sumario: | This study was primarily focused on the supercritical fluid extraction (SFE) of cherry seed oil and the optimization of the process using sequential extraction kinetics modeling and artificial neural networks (ANN). The SFE study was organized according to Box-Behnken design of experiment, with additional runs. Pressure, temperature and flow rate were chosen as independent variables. Five well known empirical kinetic models and three mass-transfer kinetics models based on the Sovová’s solution of SFE equations were successfully applied for kinetics modeling. The developed mass-transfer models exhibited better fit of experimental data, according to the calculated statistical tests (R(2), SSE and AARD). The initial slope of the SFE curve was evaluated as an output variable in the ANN optimization. The obtained results suggested that it is advisable to lead SFE process at an increased pressure and CO(2) flow rate with lower temperature and particle size values to reach a maximal initial slope. |
---|