Cargando…
Computing the Riemannian curvature of image patch and single-cell RNA sequencing data manifolds using extrinsic differential geometry
Most high-dimensional datasets are thought to be inherently low-dimensional—that is, data points are constrained to lie on a low-dimensional manifold embedded in a high-dimensional ambient space. Here, we study the viability of two approaches from differential geometry to estimate the Riemannian cur...
Autores principales: | Sritharan, Duluxan, Wang, Shu, Hormoz, Sahand |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307776/ https://www.ncbi.nlm.nih.gov/pubmed/34272279 http://dx.doi.org/10.1073/pnas.2100473118 |
Ejemplares similares
-
Riemannian manifolds: an introduction to curvature
por: Lee, John M
Publicado: (1997) -
An introduction to differentiable manifolds and Riemannian geometry
por: Boothby, William Munger 1918-
Publicado: (1986) -
An introduction to differentiable manifolds and Riemannian geometry
por: Boothby, William Munger
Publicado: (1986) -
An Introduction to Differentiable Manifolds and Riemannian Geometry
por: Boothby, William M
Publicado: (1975) -
Contact manifolds in Riemannian geometry
por: Blair, David Ervin
Publicado: (1976)