Cargando…
An Objective Prior from a Scoring Rule
In this paper, we introduce a novel objective prior distribution levering on the connections between information, divergence and scoring rules. In particular, we do so from the starting point of convex functions representing information in density functions. This provides a natural route to proper l...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308018/ https://www.ncbi.nlm.nih.gov/pubmed/34210047 http://dx.doi.org/10.3390/e23070833 |
Sumario: | In this paper, we introduce a novel objective prior distribution levering on the connections between information, divergence and scoring rules. In particular, we do so from the starting point of convex functions representing information in density functions. This provides a natural route to proper local scoring rules using Bregman divergence. Specifically, we determine the prior which solves setting the score function to be a constant. Although in itself this provides motivation for an objective prior, the prior also minimizes a corresponding information criterion. |
---|