Cargando…
Conflict Data Fusion in a Multi-Agent System Premised on the Base Basic Probability Assignment and Evidence Distance
The multi-agent information fusion (MAIF) system can alleviate the limitations of a single expert system in dealing with complex situations, as it allows multiple agents to cooperate in order to solve problems in complex environments. Dempster–Shafer (D-S) evidence theory has important applications...
Autores principales: | Liu, Jingyu, Tang, Yongchuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308205/ https://www.ncbi.nlm.nih.gov/pubmed/34203135 http://dx.doi.org/10.3390/e23070820 |
Ejemplares similares
-
Fusion of expert uncertain assessment in FMEA based on the negation of basic probability assignment and evidence distance
por: Yuan, Yusong, et al.
Publicado: (2022) -
A new basic probability assignment generation and combination method for conflict data fusion in the evidence theory
por: Tang, Yongchuan, et al.
Publicado: (2023) -
Multi-Source Information Fusion Based on Negation of Reconstructed Basic Probability Assignment with Padded Gaussian Distribution and Belief Entropy
por: Chen, Yujie, et al.
Publicado: (2022) -
Conflicting evidence combination based on uncertainty measure and distance of evidence
por: Jiang, Wen, et al.
Publicado: (2016) -
Measuring the Uncertainty in the Original and Negation of Evidence Using Belief Entropy for Conflict Data Fusion
por: Chen, Yutong, et al.
Publicado: (2021)