Cargando…

Copper-Silver Nanohybrids: SARS-CoV-2 Inhibitory Surfaces

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a severe health threat. The COVID-19 infections occurring in humans and animals render human-animal interfaces hot spots for spreading the pandemic. Lessons from the past point towards the antiviral properties of copper formula...

Descripción completa

Detalles Bibliográficos
Autores principales: Mosselhy, Dina A., Kareinen, Lauri, Kivistö, Ilkka, Aaltonen, Kirsi, Virtanen, Jenni, Ge, Yanling, Sironen, Tarja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308209/
https://www.ncbi.nlm.nih.gov/pubmed/34361206
http://dx.doi.org/10.3390/nano11071820
_version_ 1783728226359574528
author Mosselhy, Dina A.
Kareinen, Lauri
Kivistö, Ilkka
Aaltonen, Kirsi
Virtanen, Jenni
Ge, Yanling
Sironen, Tarja
author_facet Mosselhy, Dina A.
Kareinen, Lauri
Kivistö, Ilkka
Aaltonen, Kirsi
Virtanen, Jenni
Ge, Yanling
Sironen, Tarja
author_sort Mosselhy, Dina A.
collection PubMed
description The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a severe health threat. The COVID-19 infections occurring in humans and animals render human-animal interfaces hot spots for spreading the pandemic. Lessons from the past point towards the antiviral properties of copper formulations; however, data showing the “contact-time limit” surface inhibitory efficacy of copper formulations to contain SARS-CoV-2 are limited. Here, we show the rapid inhibition of SARS-CoV-2 after only 1 and 5 min on two different surfaces containing copper-silver (Cu-Ag) nanohybrids. We characterized the nanohybrids’ powder and surfaces using a series of sophisticated microscopy tools, including transmission and scanning electron microscopes (TEM and SEM) and energy-dispersive X-ray spectroscopy (EDX). We used culturing methods to demonstrate that Cu-Ag nanohybrids with high amounts of Cu (~65 and 78 wt%) and lower amounts of Ag (~7 and 9 wt%) inhibited SARS-CoV-2 efficiently. Collectively, the present work reveals the rapid SARS-CoV-2 surface inhibition and the promising application of such surfaces to break the SARS-CoV-2 transmission chain. For example, such applications could be invaluable within a hospital or live-stock settings, or any public place with surfaces that people frequently touch (i.e., public transportation, shopping malls, elevators, and door handles) after the precise control of different parameters and toxicity evaluations.
format Online
Article
Text
id pubmed-8308209
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83082092021-07-25 Copper-Silver Nanohybrids: SARS-CoV-2 Inhibitory Surfaces Mosselhy, Dina A. Kareinen, Lauri Kivistö, Ilkka Aaltonen, Kirsi Virtanen, Jenni Ge, Yanling Sironen, Tarja Nanomaterials (Basel) Article The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a severe health threat. The COVID-19 infections occurring in humans and animals render human-animal interfaces hot spots for spreading the pandemic. Lessons from the past point towards the antiviral properties of copper formulations; however, data showing the “contact-time limit” surface inhibitory efficacy of copper formulations to contain SARS-CoV-2 are limited. Here, we show the rapid inhibition of SARS-CoV-2 after only 1 and 5 min on two different surfaces containing copper-silver (Cu-Ag) nanohybrids. We characterized the nanohybrids’ powder and surfaces using a series of sophisticated microscopy tools, including transmission and scanning electron microscopes (TEM and SEM) and energy-dispersive X-ray spectroscopy (EDX). We used culturing methods to demonstrate that Cu-Ag nanohybrids with high amounts of Cu (~65 and 78 wt%) and lower amounts of Ag (~7 and 9 wt%) inhibited SARS-CoV-2 efficiently. Collectively, the present work reveals the rapid SARS-CoV-2 surface inhibition and the promising application of such surfaces to break the SARS-CoV-2 transmission chain. For example, such applications could be invaluable within a hospital or live-stock settings, or any public place with surfaces that people frequently touch (i.e., public transportation, shopping malls, elevators, and door handles) after the precise control of different parameters and toxicity evaluations. MDPI 2021-07-13 /pmc/articles/PMC8308209/ /pubmed/34361206 http://dx.doi.org/10.3390/nano11071820 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mosselhy, Dina A.
Kareinen, Lauri
Kivistö, Ilkka
Aaltonen, Kirsi
Virtanen, Jenni
Ge, Yanling
Sironen, Tarja
Copper-Silver Nanohybrids: SARS-CoV-2 Inhibitory Surfaces
title Copper-Silver Nanohybrids: SARS-CoV-2 Inhibitory Surfaces
title_full Copper-Silver Nanohybrids: SARS-CoV-2 Inhibitory Surfaces
title_fullStr Copper-Silver Nanohybrids: SARS-CoV-2 Inhibitory Surfaces
title_full_unstemmed Copper-Silver Nanohybrids: SARS-CoV-2 Inhibitory Surfaces
title_short Copper-Silver Nanohybrids: SARS-CoV-2 Inhibitory Surfaces
title_sort copper-silver nanohybrids: sars-cov-2 inhibitory surfaces
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308209/
https://www.ncbi.nlm.nih.gov/pubmed/34361206
http://dx.doi.org/10.3390/nano11071820
work_keys_str_mv AT mosselhydinaa coppersilvernanohybridssarscov2inhibitorysurfaces
AT kareinenlauri coppersilvernanohybridssarscov2inhibitorysurfaces
AT kivistoilkka coppersilvernanohybridssarscov2inhibitorysurfaces
AT aaltonenkirsi coppersilvernanohybridssarscov2inhibitorysurfaces
AT virtanenjenni coppersilvernanohybridssarscov2inhibitorysurfaces
AT geyanling coppersilvernanohybridssarscov2inhibitorysurfaces
AT sironentarja coppersilvernanohybridssarscov2inhibitorysurfaces