Cargando…
Multifunctional Gold Nanorod for Therapeutic Applications and Pharmaceutical Delivery Considering Cellular Metabolic Responses, Oxidative Stress and Cellular Longevity
Multifunctional gold nanorods (GNR) have drawn growing interest in biomedical fields because of their excellent biocompatibility, ease of alteration, and special optical properties. The great advantage of using GNR in medicine is their application to Photothermal therapy (PPTT), which is possible th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308363/ https://www.ncbi.nlm.nih.gov/pubmed/34361251 http://dx.doi.org/10.3390/nano11071868 |
Sumario: | Multifunctional gold nanorods (GNR) have drawn growing interest in biomedical fields because of their excellent biocompatibility, ease of alteration, and special optical properties. The great advantage of using GNR in medicine is their application to Photothermal therapy (PPTT), which is possible thanks to their ability to turn luminous energy into heat to cause cellular hyperthermia. For this purpose, the relevant articles between 1988 and 2020 were searched in databases such as John Wiley, Free paper, Scopus, Science Direct, and Springer to obtain the latest findings on multifunctional gold nanorods for therapeutic applications and pharmaceutical delivery. In this article, we review recent progress in diagnostic and therapeutic applications of multifunctional GNR, highlighting new information about their toxicity to various cellular categories, oxidative stress, cellular longevity, and their metabolic effects, such as the effect on the energy cycles and genetic structures. The methods for the synthesis and functionalization of GNR were surveyed. This review includes new information about GNR toxicity to various cellular categories and their metabolic effects. |
---|