Cargando…
Anomalous Terminal Shear Viscosity Behavior of Polycarbonate Nanocomposites Containing Grafted Nanosilica Particles
Viscosity controls an important issue in polymer processing. This paper reports on the terminal viscosity behavior of a polymer melt containing grafted nanosilica particles. The melt viscosity behavior of the nanocomposites was found to depend on the interaction between the polymer matrix and the na...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308399/ https://www.ncbi.nlm.nih.gov/pubmed/34361225 http://dx.doi.org/10.3390/nano11071839 |
Sumario: | Viscosity controls an important issue in polymer processing. This paper reports on the terminal viscosity behavior of a polymer melt containing grafted nanosilica particles. The melt viscosity behavior of the nanocomposites was found to depend on the interaction between the polymer matrix and the nanoparticle surface. In the case of polycarbonate (PC) nanocomposites, the viscosity decreases by approximately 25% at concentrations below 0.7 vol% of nanosilica, followed by an increase at higher concentrations. Chemical analysis shows that the decrease in viscosity can be attributed to in situ grafting of PC on the nanosilica surface, leading to a lower entanglement density around the nanoparticle. The thickness of the graft layer was found to be of the order of the tube diameter, with the disentangled zone being approximately equal to the radius of gyration ([Formula: see text]) polymer chain. Furthermore, it is shown that the grafting has an effect on the motion of the PC chains at all timescales. Finally, the viscosity behavior in the PC nanocomposites was found to be independent of the molar mass of PC. The PC data are compared with polystyrene nanocomposites, for which the interaction between the polymer and nanoparticles is absent. The results outlined in this paper can be utilized for applications with low shear processing conditions, e.g., rotomolding, 3D printing, and multilayer co-extrusion. |
---|