Cargando…
Evolution of the Computational Pharmaceutics Approaches in the Modeling and Prediction of Drug Payload in Lipid and Polymeric Nanocarriers
This review describes different trials to model and predict drug payload in lipid and polymeric nanocarriers. It traces the evolution of the field from the earliest attempts when numerous solubility and Flory-Huggins models were applied, to the emergence of molecular dynamic simulations and docking...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308715/ https://www.ncbi.nlm.nih.gov/pubmed/34358071 http://dx.doi.org/10.3390/ph14070645 |
Sumario: | This review describes different trials to model and predict drug payload in lipid and polymeric nanocarriers. It traces the evolution of the field from the earliest attempts when numerous solubility and Flory-Huggins models were applied, to the emergence of molecular dynamic simulations and docking studies, until the exciting practically successful era of artificial intelligence and machine learning. Going through matching and poorly matching studies with the wet lab-dry lab results, many key aspects were reviewed and addressed in the form of sequential examples that highlighted both cases. |
---|