Cargando…
Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases
The process of neuroinflammation contributes to the pathogenic mechanism of many neurodegenerative diseases. The deleterious attributes of neuroinflammation involve aberrant and uncontrolled activation of glia, which can result in damage to proximal brain parenchyma. Failure to distinguish self from...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308761/ https://www.ncbi.nlm.nih.gov/pubmed/34358037 http://dx.doi.org/10.3390/pathogens10070887 |
_version_ | 1783728358639534080 |
---|---|
author | Trichka, Josephine Zou, Wen-Quan |
author_facet | Trichka, Josephine Zou, Wen-Quan |
author_sort | Trichka, Josephine |
collection | PubMed |
description | The process of neuroinflammation contributes to the pathogenic mechanism of many neurodegenerative diseases. The deleterious attributes of neuroinflammation involve aberrant and uncontrolled activation of glia, which can result in damage to proximal brain parenchyma. Failure to distinguish self from non-self, as well as leukocyte reaction to aggregation and accumulation of proteins in the CNS, are the primary mechanisms by which neuroinflammation is initiated. While processes local to the CNS may instigate neurodegenerative disease, the existence or dysregulation of systemic homeostasis can also serve to improve or worsen CNS pathologies, respectively. One fundamental component of systemic homeostasis is the gut microbiota, which communicates with the CNS via microbial metabolite production, the peripheral nervous system, and regulation of tryptophan metabolism. Over the past 10–15 years, research focused on the microbiota–gut–brain axis has culminated in the discovery that dysbiosis, or an imbalance between commensal and pathogenic gut bacteria, can promote CNS pathologies. Conversely, a properly regulated and well-balanced microbiome supports CNS homeostasis and reduces the incidence and extent of pathogenic neuroinflammation. This review will discuss the role of the gut microbiota in exacerbating or alleviating neuroinflammation in neurodegenerative diseases, and potential microbiota-based therapeutic approaches to reduce pathology in diseased states. |
format | Online Article Text |
id | pubmed-8308761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83087612021-07-25 Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases Trichka, Josephine Zou, Wen-Quan Pathogens Review The process of neuroinflammation contributes to the pathogenic mechanism of many neurodegenerative diseases. The deleterious attributes of neuroinflammation involve aberrant and uncontrolled activation of glia, which can result in damage to proximal brain parenchyma. Failure to distinguish self from non-self, as well as leukocyte reaction to aggregation and accumulation of proteins in the CNS, are the primary mechanisms by which neuroinflammation is initiated. While processes local to the CNS may instigate neurodegenerative disease, the existence or dysregulation of systemic homeostasis can also serve to improve or worsen CNS pathologies, respectively. One fundamental component of systemic homeostasis is the gut microbiota, which communicates with the CNS via microbial metabolite production, the peripheral nervous system, and regulation of tryptophan metabolism. Over the past 10–15 years, research focused on the microbiota–gut–brain axis has culminated in the discovery that dysbiosis, or an imbalance between commensal and pathogenic gut bacteria, can promote CNS pathologies. Conversely, a properly regulated and well-balanced microbiome supports CNS homeostasis and reduces the incidence and extent of pathogenic neuroinflammation. This review will discuss the role of the gut microbiota in exacerbating or alleviating neuroinflammation in neurodegenerative diseases, and potential microbiota-based therapeutic approaches to reduce pathology in diseased states. MDPI 2021-07-13 /pmc/articles/PMC8308761/ /pubmed/34358037 http://dx.doi.org/10.3390/pathogens10070887 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Trichka, Josephine Zou, Wen-Quan Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases |
title | Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases |
title_full | Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases |
title_fullStr | Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases |
title_full_unstemmed | Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases |
title_short | Modulation of Neuroinflammation by the Gut Microbiota in Prion and Prion-Like Diseases |
title_sort | modulation of neuroinflammation by the gut microbiota in prion and prion-like diseases |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308761/ https://www.ncbi.nlm.nih.gov/pubmed/34358037 http://dx.doi.org/10.3390/pathogens10070887 |
work_keys_str_mv | AT trichkajosephine modulationofneuroinflammationbythegutmicrobiotainprionandprionlikediseases AT zouwenquan modulationofneuroinflammationbythegutmicrobiotainprionandprionlikediseases |