Cargando…

3′,4′-Dihydroxyflavonol Modulates the Cell Cycle in Cancer Cells: Implication as a Potential Combination Drug in Osteosarcoma

New agents are demanded to increase the therapeutic options for osteosarcoma (OS). Although OS is the most common bone cancer in children and adolescents, it is considered a rare disorder. Therefore, finding adjuvant drugs has potential to advance therapy for this disease. In this study, 3′,4′-dihyd...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferreira de Oliveira, José Miguel P., Almeida, Joana Filipa D., Martins, Maria, Proença, Carina, Oliveira, Helena, Fernandes, Eduarda, Santos, Conceição
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308859/
https://www.ncbi.nlm.nih.gov/pubmed/34358066
http://dx.doi.org/10.3390/ph14070640
Descripción
Sumario:New agents are demanded to increase the therapeutic options for osteosarcoma (OS). Although OS is the most common bone cancer in children and adolescents, it is considered a rare disorder. Therefore, finding adjuvant drugs has potential to advance therapy for this disease. In this study, 3′,4′-dihydroxyflavonol (DiOHF) was investigated to assess the effects in OS cellular models in combination with doxorubicin (Dox). MG-63 and U2OS human OS cells were exposed to DiOHF and Dox and tested for cell viability and growth. To elucidate the inhibitory effects of DiOHF, additional studies were conducted to assess apoptosis and cell cycle distribution, gene expression quantification of cell cycle regulators, and cytokinesis-block cytome assay to determine nuclear division rate. DiOHF decreased OS cell growth and viability in a concentration-dependent manner. Its combination with Dox enabled Dox dose reduction in both cell lines, with synergistic interactions in U2OS cells. Although no significant apoptotic effects were detected at low concentrations, cytostatic effects were demonstrated in both cell lines. Incubation with DiOHF altered cell cycle dynamics and resulted in differential cyclin and cyclin-dependent kinase expression. Overall, this study presents an antiproliferative action of DiOHF in OS combination therapy via modulation of the cell cycle and nuclear division.