Cargando…
Nanofibrous Formulation of Cyclodextrin Stabilized Lipases for Efficient Pancreatin Replacement Therapies
Enzyme replacement therapies (ERT) have been of great help over the past 30 years in the treatment of various lysosomal storage disorders, including chronic pancreatitis and its common complication, exocrine pancreatic insufficiency. Research shows that difficulties in designing such drugs can be ov...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308945/ https://www.ncbi.nlm.nih.gov/pubmed/34199011 http://dx.doi.org/10.3390/pharmaceutics13070972 |
_version_ | 1783728404534657024 |
---|---|
author | Tóth, Gergő Dániel Kazsoki, Adrienn Gyarmati, Benjámin Szilágyi, András Vasvári, Gábor Katona, Gábor Szente, Lajos Zelkó, Romána Poppe, László Balogh-Weiser, Diána Balogh, György T. |
author_facet | Tóth, Gergő Dániel Kazsoki, Adrienn Gyarmati, Benjámin Szilágyi, András Vasvári, Gábor Katona, Gábor Szente, Lajos Zelkó, Romána Poppe, László Balogh-Weiser, Diána Balogh, György T. |
author_sort | Tóth, Gergő Dániel |
collection | PubMed |
description | Enzyme replacement therapies (ERT) have been of great help over the past 30 years in the treatment of various lysosomal storage disorders, including chronic pancreatitis and its common complication, exocrine pancreatic insufficiency. Research shows that difficulties in designing such drugs can be overcome by using appropriate additives and various enzyme immobilization techniques. Cyclodextrins (CDs) can be considered as a promising additive for enzyme replacement therapies, as they are known to enhance the activity of enzymes in a complex process due to their specific binding. In this study, we investigated the formulation of lipases (from Aspergillus oryzae and Burkholderia cepacia) paired with different cyclodextrins in poly(vinyl alcohol) (PVA) nanofibers by electrospinning technique. We examined the effect of the presence of cyclodextrins and nanoformulation on the lipase activity. The rheological and morphological characterizations of precursors and nanofibers were also performed using a viscometer as well as electron and Raman microscope. We found that by selecting the appropriate CD:lipase ratio, the activity of the investigated enzyme could be multiplied, and cyclodextrins can support the homogeneous dispersion of lipases inside the solid formula. In addition, the entrapment of lipases in PVA nanofibers led to a significant increase in activity compared to the preformulated precursor. In this way, the nanofibrous formulation of lipases combining CDs as additives can provide an efficient and sustainable possibility for designing novel solid medicines in ERT. |
format | Online Article Text |
id | pubmed-8308945 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83089452021-07-25 Nanofibrous Formulation of Cyclodextrin Stabilized Lipases for Efficient Pancreatin Replacement Therapies Tóth, Gergő Dániel Kazsoki, Adrienn Gyarmati, Benjámin Szilágyi, András Vasvári, Gábor Katona, Gábor Szente, Lajos Zelkó, Romána Poppe, László Balogh-Weiser, Diána Balogh, György T. Pharmaceutics Article Enzyme replacement therapies (ERT) have been of great help over the past 30 years in the treatment of various lysosomal storage disorders, including chronic pancreatitis and its common complication, exocrine pancreatic insufficiency. Research shows that difficulties in designing such drugs can be overcome by using appropriate additives and various enzyme immobilization techniques. Cyclodextrins (CDs) can be considered as a promising additive for enzyme replacement therapies, as they are known to enhance the activity of enzymes in a complex process due to their specific binding. In this study, we investigated the formulation of lipases (from Aspergillus oryzae and Burkholderia cepacia) paired with different cyclodextrins in poly(vinyl alcohol) (PVA) nanofibers by electrospinning technique. We examined the effect of the presence of cyclodextrins and nanoformulation on the lipase activity. The rheological and morphological characterizations of precursors and nanofibers were also performed using a viscometer as well as electron and Raman microscope. We found that by selecting the appropriate CD:lipase ratio, the activity of the investigated enzyme could be multiplied, and cyclodextrins can support the homogeneous dispersion of lipases inside the solid formula. In addition, the entrapment of lipases in PVA nanofibers led to a significant increase in activity compared to the preformulated precursor. In this way, the nanofibrous formulation of lipases combining CDs as additives can provide an efficient and sustainable possibility for designing novel solid medicines in ERT. MDPI 2021-06-27 /pmc/articles/PMC8308945/ /pubmed/34199011 http://dx.doi.org/10.3390/pharmaceutics13070972 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tóth, Gergő Dániel Kazsoki, Adrienn Gyarmati, Benjámin Szilágyi, András Vasvári, Gábor Katona, Gábor Szente, Lajos Zelkó, Romána Poppe, László Balogh-Weiser, Diána Balogh, György T. Nanofibrous Formulation of Cyclodextrin Stabilized Lipases for Efficient Pancreatin Replacement Therapies |
title | Nanofibrous Formulation of Cyclodextrin Stabilized Lipases for Efficient Pancreatin Replacement Therapies |
title_full | Nanofibrous Formulation of Cyclodextrin Stabilized Lipases for Efficient Pancreatin Replacement Therapies |
title_fullStr | Nanofibrous Formulation of Cyclodextrin Stabilized Lipases for Efficient Pancreatin Replacement Therapies |
title_full_unstemmed | Nanofibrous Formulation of Cyclodextrin Stabilized Lipases for Efficient Pancreatin Replacement Therapies |
title_short | Nanofibrous Formulation of Cyclodextrin Stabilized Lipases for Efficient Pancreatin Replacement Therapies |
title_sort | nanofibrous formulation of cyclodextrin stabilized lipases for efficient pancreatin replacement therapies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8308945/ https://www.ncbi.nlm.nih.gov/pubmed/34199011 http://dx.doi.org/10.3390/pharmaceutics13070972 |
work_keys_str_mv | AT tothgergodaniel nanofibrousformulationofcyclodextrinstabilizedlipasesforefficientpancreatinreplacementtherapies AT kazsokiadrienn nanofibrousformulationofcyclodextrinstabilizedlipasesforefficientpancreatinreplacementtherapies AT gyarmatibenjamin nanofibrousformulationofcyclodextrinstabilizedlipasesforefficientpancreatinreplacementtherapies AT szilagyiandras nanofibrousformulationofcyclodextrinstabilizedlipasesforefficientpancreatinreplacementtherapies AT vasvarigabor nanofibrousformulationofcyclodextrinstabilizedlipasesforefficientpancreatinreplacementtherapies AT katonagabor nanofibrousformulationofcyclodextrinstabilizedlipasesforefficientpancreatinreplacementtherapies AT szentelajos nanofibrousformulationofcyclodextrinstabilizedlipasesforefficientpancreatinreplacementtherapies AT zelkoromana nanofibrousformulationofcyclodextrinstabilizedlipasesforefficientpancreatinreplacementtherapies AT poppelaszlo nanofibrousformulationofcyclodextrinstabilizedlipasesforefficientpancreatinreplacementtherapies AT baloghweiserdiana nanofibrousformulationofcyclodextrinstabilizedlipasesforefficientpancreatinreplacementtherapies AT baloghgyorgyt nanofibrousformulationofcyclodextrinstabilizedlipasesforefficientpancreatinreplacementtherapies |