Cargando…
The Neuropeptide Cortistatin Alleviates Neuropathic Pain in Experimental Models of Peripheral Nerve Injury
Neuropathic pain is one of the most severe forms of chronic pain caused by the direct injury of the somatosensory system. The current drugs for treating neuropathies have limited efficacies or show important side effects, and the development of analgesics with novel modes of action is critical. The...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309056/ https://www.ncbi.nlm.nih.gov/pubmed/34202793 http://dx.doi.org/10.3390/pharmaceutics13070947 |
Sumario: | Neuropathic pain is one of the most severe forms of chronic pain caused by the direct injury of the somatosensory system. The current drugs for treating neuropathies have limited efficacies or show important side effects, and the development of analgesics with novel modes of action is critical. The identification of endogenous anti-nociceptive factors has emerged as an attractive strategy for designing new pharmacological approaches to treat neuropathic pain. Cortistatin is a neuropeptide with potent anti-inflammatory activity, recently identified as a natural analgesic peptide in several models of pain evoked by inflammatory conditions. Here, we investigated the potential analgesic effect of cortistatin in neuropathic pain using a variety of experimental models of peripheral nerve injury caused by chronic constriction or partial transection of the sciatic nerve or by diabetic neuropathy. We found that the peripheral and central injection of cortistatin ameliorated hyperalgesia and allodynia, two of the dominant clinical manifestations of chronic neuropathic pain. Cortistatin-induced analgesia was multitargeted, as it regulated the nerve damage-induced hypersensitization of primary nociceptors, inhibited neuroinflammatory responses, and enhanced the production of neurotrophic factors both at the peripheral and central levels. We also demonstrated the neuroregenerative/protective capacity of cortistatin in a model of severe peripheral nerve transection. Interestingly, the nociceptive system responded to nerve injury by secreting cortistatin, and a deficiency in cortistatin exacerbated the neuropathic pain responses and peripheral nerve dysfunction. Therefore, cortistatin-based therapies emerge as attractive alternatives for treating chronic neuropathic pain of different etiologies. |
---|