Cargando…
Pharmacokinetic Comparison between Methotrexate-Loaded Nanoparticles and Nanoemulsions as Hard- and Soft-Type Nanoformulations: A Population Pharmacokinetic Modeling Approach
The purpose of this study was to identify and explore the differences in pharmacokinetics between different nanoformulations. This was done by comparing the pharmacokinetics of methotrexate-loaded nanoparticles [poly(lactic-co-glycolic acid); size of 163.70 ± 10.25 nm] and nanoemulsions (olive oil a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309067/ https://www.ncbi.nlm.nih.gov/pubmed/34371740 http://dx.doi.org/10.3390/pharmaceutics13071050 |
Sumario: | The purpose of this study was to identify and explore the differences in pharmacokinetics between different nanoformulations. This was done by comparing the pharmacokinetics of methotrexate-loaded nanoparticles [poly(lactic-co-glycolic acid); size of 163.70 ± 10.25 nm] and nanoemulsions (olive oil and Labrasol; size of 173.77 ± 5.76 nm), which represent hard- and soft-type nanoformulations, respectively. In addition, the population pharmacokinetic modeling approach as a useful tool for the comparison of pharmacokinetics between nanoformulations was newly proposed through this study. Significant pharmacokinetic differences were identified between nanoformulations through the new population pharmacokinetic modeling approach. As a result, the formulation type was explored as a significant covariate. The clearance and bioavailability of methotrexate-loaded nanoemulsions tended to decrease by 99% and increase by 19%, respectively, compared to those of the nanoparticles. The exploration of significant pharmacokinetic differences between drug formulations and their correlations presented in this study provide new perspectives on the development of nanoformulations. |
---|