Cargando…
Application of Artificial Neural Networks to Predict the Intrinsic Solubility of Drug-Like Molecules
Machine learning (ML) approaches are receiving increasing attention from pharmaceutical companies and regulatory agencies, given their ability to mine knowledge from available data. In drug discovery, for example, they are employed in quantitative structure–property relationship (QSPR) models to pre...
Autores principales: | Tosca, Elena M., Bartolucci, Roberta, Magni, Paolo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309152/ https://www.ncbi.nlm.nih.gov/pubmed/34371792 http://dx.doi.org/10.3390/pharmaceutics13071101 |
Ejemplares similares
-
Replacement, Reduction, and Refinement of Animal Experiments in Anticancer Drug Development: The Contribution of 3D In Vitro Cancer Models in the Drug Efficacy Assessment
por: Tosca, Elena M., et al.
Publicado: (2023) -
Challenges in the use of atomistic simulations to predict solubilities of drug-like molecules
por: Duarte Ramos Matos, Guilherme, et al.
Publicado: (2019) -
Application of artificial neural network in predicting EI
por: Allahyari, Elahe
Publicado: (2020) -
A two-stages global sensitivity analysis by using the δ sensitivity index in presence of correlated inputs: application on a tumor growth inhibition model based on the dynamic energy budget theory
por: De Carlo, Alessandro, et al.
Publicado: (2023) -
In silico prediction of UGT-mediated metabolism in drug-like molecules via graph neural network
por: Huang, Mengting, et al.
Publicado: (2022)