Cargando…
Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications
The novel controlled and localized delivery of drug molecules to target tissues using an external electric stimulus makes electro-responsive drug delivery systems both feasible and desirable, as well as entailing a reduction in the side effects. Novel micro-scaffold matrices were designed based on p...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309188/ https://www.ncbi.nlm.nih.gov/pubmed/34201978 http://dx.doi.org/10.3390/pharmaceutics13070957 |
_version_ | 1783728463742500864 |
---|---|
author | Croitoru, Alexa-Maria Karaçelebi, Yasin Saatcioglu, Elif Altan, Eray Ulag, Songul Aydoğan, Huseyin Kıvanc Sahin, Ali Motelica, Ludmila Oprea, Ovidiu Tihauan, Bianca-Maria Popescu, Roxana-Cristina Savu, Diana Trusca, Roxana Ficai, Denisa Gunduz, Oguzhan Ficai, Anton |
author_facet | Croitoru, Alexa-Maria Karaçelebi, Yasin Saatcioglu, Elif Altan, Eray Ulag, Songul Aydoğan, Huseyin Kıvanc Sahin, Ali Motelica, Ludmila Oprea, Ovidiu Tihauan, Bianca-Maria Popescu, Roxana-Cristina Savu, Diana Trusca, Roxana Ficai, Denisa Gunduz, Oguzhan Ficai, Anton |
author_sort | Croitoru, Alexa-Maria |
collection | PubMed |
description | The novel controlled and localized delivery of drug molecules to target tissues using an external electric stimulus makes electro-responsive drug delivery systems both feasible and desirable, as well as entailing a reduction in the side effects. Novel micro-scaffold matrices were designed based on poly(lactic acid) (PLA) and graphene oxide (GO) via electrospinning. Quercetin (Q), a natural flavonoid, was loaded into the fiber matrices in order to investigate the potential as a model drug for wound dressing applications. The physico-chemical properties, electrical triggering capacity, antimicrobial assay and biocompatibility were also investigated. The newly fabricated PLA/GO/Q scaffolds showed uniform and smooth surface morphologies, without any beads, and with diameters ranging from 1107 nm (10%PLA/0.1GO/Q) to 1243 nm (10%PLA). The in vitro release tests of Q from the scaffolds showed that Q can be released much faster (up to 8640 times) when an appropriate electric field is applied compared to traditional drug-release approaches. For instance, 10 s of electric stimulation is enough to ensure the full delivery of the loaded Q from the 10%PLA/1%GO/Q microfiber scaffold at both 10 Hz and at 50 Hz. The antimicrobial tests showed the inhibition of bacterial film growth. Certainly, these materials could be loaded with more potent agents for anti-cancer, anti-infection, and anti-osteoporotic therapies. The L929 fibroblast cells cultured on these scaffolds were distributed homogeneously on the scaffolds, and the highest viability value of 82.3% was obtained for the 10%PLA/0.5%GO/Q microfiber scaffold. Moreover, the addition of Q in the PLA/GO matrix stimulated the production of IL-6 at 24 h, which could be linked to an acute inflammatory response in the exposed fibroblast cells, as a potential effect of wound healing. As a general conclusion, these results demonstrate the possibility of developing graphene oxide-based supports for the electrically triggered delivery of biological active agents, with the delivery rate being externally controlled in order to ensure personalized release. |
format | Online Article Text |
id | pubmed-8309188 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83091882021-07-25 Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications Croitoru, Alexa-Maria Karaçelebi, Yasin Saatcioglu, Elif Altan, Eray Ulag, Songul Aydoğan, Huseyin Kıvanc Sahin, Ali Motelica, Ludmila Oprea, Ovidiu Tihauan, Bianca-Maria Popescu, Roxana-Cristina Savu, Diana Trusca, Roxana Ficai, Denisa Gunduz, Oguzhan Ficai, Anton Pharmaceutics Article The novel controlled and localized delivery of drug molecules to target tissues using an external electric stimulus makes electro-responsive drug delivery systems both feasible and desirable, as well as entailing a reduction in the side effects. Novel micro-scaffold matrices were designed based on poly(lactic acid) (PLA) and graphene oxide (GO) via electrospinning. Quercetin (Q), a natural flavonoid, was loaded into the fiber matrices in order to investigate the potential as a model drug for wound dressing applications. The physico-chemical properties, electrical triggering capacity, antimicrobial assay and biocompatibility were also investigated. The newly fabricated PLA/GO/Q scaffolds showed uniform and smooth surface morphologies, without any beads, and with diameters ranging from 1107 nm (10%PLA/0.1GO/Q) to 1243 nm (10%PLA). The in vitro release tests of Q from the scaffolds showed that Q can be released much faster (up to 8640 times) when an appropriate electric field is applied compared to traditional drug-release approaches. For instance, 10 s of electric stimulation is enough to ensure the full delivery of the loaded Q from the 10%PLA/1%GO/Q microfiber scaffold at both 10 Hz and at 50 Hz. The antimicrobial tests showed the inhibition of bacterial film growth. Certainly, these materials could be loaded with more potent agents for anti-cancer, anti-infection, and anti-osteoporotic therapies. The L929 fibroblast cells cultured on these scaffolds were distributed homogeneously on the scaffolds, and the highest viability value of 82.3% was obtained for the 10%PLA/0.5%GO/Q microfiber scaffold. Moreover, the addition of Q in the PLA/GO matrix stimulated the production of IL-6 at 24 h, which could be linked to an acute inflammatory response in the exposed fibroblast cells, as a potential effect of wound healing. As a general conclusion, these results demonstrate the possibility of developing graphene oxide-based supports for the electrically triggered delivery of biological active agents, with the delivery rate being externally controlled in order to ensure personalized release. MDPI 2021-06-25 /pmc/articles/PMC8309188/ /pubmed/34201978 http://dx.doi.org/10.3390/pharmaceutics13070957 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Croitoru, Alexa-Maria Karaçelebi, Yasin Saatcioglu, Elif Altan, Eray Ulag, Songul Aydoğan, Huseyin Kıvanc Sahin, Ali Motelica, Ludmila Oprea, Ovidiu Tihauan, Bianca-Maria Popescu, Roxana-Cristina Savu, Diana Trusca, Roxana Ficai, Denisa Gunduz, Oguzhan Ficai, Anton Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications |
title | Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications |
title_full | Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications |
title_fullStr | Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications |
title_full_unstemmed | Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications |
title_short | Electrically Triggered Drug Delivery from Novel Electrospun Poly(Lactic Acid)/Graphene Oxide/Quercetin Fibrous Scaffolds for Wound Dressing Applications |
title_sort | electrically triggered drug delivery from novel electrospun poly(lactic acid)/graphene oxide/quercetin fibrous scaffolds for wound dressing applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309188/ https://www.ncbi.nlm.nih.gov/pubmed/34201978 http://dx.doi.org/10.3390/pharmaceutics13070957 |
work_keys_str_mv | AT croitorualexamaria electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT karacelebiyasin electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT saatciogluelif electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT altaneray electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT ulagsongul electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT aydoganhuseyinkıvanc electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT sahinali electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT motelicaludmila electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT opreaovidiu electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT tihauanbiancamaria electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT popescuroxanacristina electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT savudiana electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT truscaroxana electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT ficaidenisa electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT gunduzoguzhan electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications AT ficaianton electricallytriggereddrugdeliveryfromnovelelectrospunpolylacticacidgrapheneoxidequercetinfibrousscaffoldsforwounddressingapplications |