Cargando…
Silicon Amendment Enhances Agronomic Efficiency of Nitrogen Fertilization in Maize and Wheat Crops under Tropical Conditions
Sustainable management strategies are needed to improve agronomic efficiency and cereal yield production under harsh abiotic climatic conditions such as in tropical Savannah. Under these environments, field-grown crops are usually exposed to drought and high temperature conditions. Silicon (Si) appl...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309197/ https://www.ncbi.nlm.nih.gov/pubmed/34209953 http://dx.doi.org/10.3390/plants10071329 |
_version_ | 1783728465846992896 |
---|---|
author | Galindo, Fernando Shintate Pagliari, Paulo Humberto Rodrigues, Willian Lima Fernandes, Guilherme Carlos Boleta, Eduardo Henrique Marcandalli Santini, José Mateus Kondo Jalal, Arshad Buzetti, Salatiér Lavres, José Teixeira Filho, Marcelo Carvalho Minhoto |
author_facet | Galindo, Fernando Shintate Pagliari, Paulo Humberto Rodrigues, Willian Lima Fernandes, Guilherme Carlos Boleta, Eduardo Henrique Marcandalli Santini, José Mateus Kondo Jalal, Arshad Buzetti, Salatiér Lavres, José Teixeira Filho, Marcelo Carvalho Minhoto |
author_sort | Galindo, Fernando Shintate |
collection | PubMed |
description | Sustainable management strategies are needed to improve agronomic efficiency and cereal yield production under harsh abiotic climatic conditions such as in tropical Savannah. Under these environments, field-grown crops are usually exposed to drought and high temperature conditions. Silicon (Si) application could be a useful and sustainable strategy to enhance agronomic N use efficiency, leading to better cereal development. This study was developed to explore the effect of Si application as a soil amendment source (Ca and Mg silicate) associated with N levels applied in a side-dressing (control, low, medium and high N levels) on maize and wheat development, N uptake, agronomic efficiency and grain yield. The field experiments were carried out during four cropping seasons, using two soil amendment sources (Ca and Mg silicate and dolomitic limestone) and four N levels (0, 50, 100 and 200 kg N ha(−1)). The following evaluations were performed in maize and wheat crops: the shoots and roots biomass, total N, N-NO(3)(−), N-NH(4)(+) and Si accumulation in the shoots, roots and grain tissue, leaf chlorophyll index, grain yield and agronomic efficiency. The silicon amendment application enhanced leaf chlorophyll index, agronomic efficiency and N-uptake in maize and wheat plants, benefiting shoots and roots development and leading to a higher grain yield (an increase of 5.2 and 7.6%, respectively). It would be possible to reduce N fertilization in maize from 185–180 to 100 kg N ha(−1) while maintaining similar grain yield with Si application. Additionally, Si application would reduce N fertilization in wheat from 195–200 to 100 kg N ha(−1). Silicon application could be a key technology for improving plant-soil N-management, especially in Si accumulator crops, leading to a more sustainable cereal production under tropical conditions. |
format | Online Article Text |
id | pubmed-8309197 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83091972021-07-25 Silicon Amendment Enhances Agronomic Efficiency of Nitrogen Fertilization in Maize and Wheat Crops under Tropical Conditions Galindo, Fernando Shintate Pagliari, Paulo Humberto Rodrigues, Willian Lima Fernandes, Guilherme Carlos Boleta, Eduardo Henrique Marcandalli Santini, José Mateus Kondo Jalal, Arshad Buzetti, Salatiér Lavres, José Teixeira Filho, Marcelo Carvalho Minhoto Plants (Basel) Article Sustainable management strategies are needed to improve agronomic efficiency and cereal yield production under harsh abiotic climatic conditions such as in tropical Savannah. Under these environments, field-grown crops are usually exposed to drought and high temperature conditions. Silicon (Si) application could be a useful and sustainable strategy to enhance agronomic N use efficiency, leading to better cereal development. This study was developed to explore the effect of Si application as a soil amendment source (Ca and Mg silicate) associated with N levels applied in a side-dressing (control, low, medium and high N levels) on maize and wheat development, N uptake, agronomic efficiency and grain yield. The field experiments were carried out during four cropping seasons, using two soil amendment sources (Ca and Mg silicate and dolomitic limestone) and four N levels (0, 50, 100 and 200 kg N ha(−1)). The following evaluations were performed in maize and wheat crops: the shoots and roots biomass, total N, N-NO(3)(−), N-NH(4)(+) and Si accumulation in the shoots, roots and grain tissue, leaf chlorophyll index, grain yield and agronomic efficiency. The silicon amendment application enhanced leaf chlorophyll index, agronomic efficiency and N-uptake in maize and wheat plants, benefiting shoots and roots development and leading to a higher grain yield (an increase of 5.2 and 7.6%, respectively). It would be possible to reduce N fertilization in maize from 185–180 to 100 kg N ha(−1) while maintaining similar grain yield with Si application. Additionally, Si application would reduce N fertilization in wheat from 195–200 to 100 kg N ha(−1). Silicon application could be a key technology for improving plant-soil N-management, especially in Si accumulator crops, leading to a more sustainable cereal production under tropical conditions. MDPI 2021-06-29 /pmc/articles/PMC8309197/ /pubmed/34209953 http://dx.doi.org/10.3390/plants10071329 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Galindo, Fernando Shintate Pagliari, Paulo Humberto Rodrigues, Willian Lima Fernandes, Guilherme Carlos Boleta, Eduardo Henrique Marcandalli Santini, José Mateus Kondo Jalal, Arshad Buzetti, Salatiér Lavres, José Teixeira Filho, Marcelo Carvalho Minhoto Silicon Amendment Enhances Agronomic Efficiency of Nitrogen Fertilization in Maize and Wheat Crops under Tropical Conditions |
title | Silicon Amendment Enhances Agronomic Efficiency of Nitrogen Fertilization in Maize and Wheat Crops under Tropical Conditions |
title_full | Silicon Amendment Enhances Agronomic Efficiency of Nitrogen Fertilization in Maize and Wheat Crops under Tropical Conditions |
title_fullStr | Silicon Amendment Enhances Agronomic Efficiency of Nitrogen Fertilization in Maize and Wheat Crops under Tropical Conditions |
title_full_unstemmed | Silicon Amendment Enhances Agronomic Efficiency of Nitrogen Fertilization in Maize and Wheat Crops under Tropical Conditions |
title_short | Silicon Amendment Enhances Agronomic Efficiency of Nitrogen Fertilization in Maize and Wheat Crops under Tropical Conditions |
title_sort | silicon amendment enhances agronomic efficiency of nitrogen fertilization in maize and wheat crops under tropical conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309197/ https://www.ncbi.nlm.nih.gov/pubmed/34209953 http://dx.doi.org/10.3390/plants10071329 |
work_keys_str_mv | AT galindofernandoshintate siliconamendmentenhancesagronomicefficiencyofnitrogenfertilizationinmaizeandwheatcropsundertropicalconditions AT pagliaripaulohumberto siliconamendmentenhancesagronomicefficiencyofnitrogenfertilizationinmaizeandwheatcropsundertropicalconditions AT rodrigueswillianlima siliconamendmentenhancesagronomicefficiencyofnitrogenfertilizationinmaizeandwheatcropsundertropicalconditions AT fernandesguilhermecarlos siliconamendmentenhancesagronomicefficiencyofnitrogenfertilizationinmaizeandwheatcropsundertropicalconditions AT boletaeduardohenriquemarcandalli siliconamendmentenhancesagronomicefficiencyofnitrogenfertilizationinmaizeandwheatcropsundertropicalconditions AT santinijosemateuskondo siliconamendmentenhancesagronomicefficiencyofnitrogenfertilizationinmaizeandwheatcropsundertropicalconditions AT jalalarshad siliconamendmentenhancesagronomicefficiencyofnitrogenfertilizationinmaizeandwheatcropsundertropicalconditions AT buzettisalatier siliconamendmentenhancesagronomicefficiencyofnitrogenfertilizationinmaizeandwheatcropsundertropicalconditions AT lavresjose siliconamendmentenhancesagronomicefficiencyofnitrogenfertilizationinmaizeandwheatcropsundertropicalconditions AT teixeirafilhomarcelocarvalhominhoto siliconamendmentenhancesagronomicefficiencyofnitrogenfertilizationinmaizeandwheatcropsundertropicalconditions |