Cargando…
The Combination of Mild Salinity Conditions and Exogenously Applied Phenolics Modulates Functional Traits in Lettuce
The quest for sustainable strategies aimed at increasing the bioactive properties of plant-based foods has grown quickly. In this work, we investigated the impact of exogenously applied phenolics, i.e., chlorogenic acid (CGA), hesperidin (HES), and their combinations (HES + CGA), on Lactuca sativa L...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309431/ https://www.ncbi.nlm.nih.gov/pubmed/34371660 http://dx.doi.org/10.3390/plants10071457 |
_version_ | 1783728520272281600 |
---|---|
author | Zhang, Leilei Martinelli, Erika Senizza, Biancamaria Miras-Moreno, Begoña Yildiztugay, Evren Arikan, Busra Elbasan, Fevzi Ak, Gunes Balci, Melike Zengin, Gokhan Rouphael, Youssef Lucini, Luigi |
author_facet | Zhang, Leilei Martinelli, Erika Senizza, Biancamaria Miras-Moreno, Begoña Yildiztugay, Evren Arikan, Busra Elbasan, Fevzi Ak, Gunes Balci, Melike Zengin, Gokhan Rouphael, Youssef Lucini, Luigi |
author_sort | Zhang, Leilei |
collection | PubMed |
description | The quest for sustainable strategies aimed at increasing the bioactive properties of plant-based foods has grown quickly. In this work, we investigated the impact of exogenously applied phenolics, i.e., chlorogenic acid (CGA), hesperidin (HES), and their combinations (HES + CGA), on Lactuca sativa L. grown under normal- and mild-salinity conditions. To this aim, the phenolic profile, antioxidant properties, and enzyme inhibitory activity were determined. The untargeted metabolomics profiling revealed that lettuce treated with CGA under non-stressed conditions exhibited the highest total phenolic content (35.98 mg Eq./g). Lettuce samples grown under salt stress showed lower phenolic contents, except for lettuce treated with HES or HES + CGA, when comparing the same treatment between the two conditions. Furthermore, the antioxidant capacity was investigated through DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,20-azinobis-(3-ethylbenzothiazoline-6-sulfonate)), and FRAP (ferric reducing antioxidant power) assays, coupled with metal-chelating activity and phosphomolybdenum capacity. An exciting increase in radical scavenging capacity was observed in lettuce treated with exogenous phenolics, in both stress and non-stress conditions. The inhibitory activity of the samples was evaluated against target health-related enzymes, namely cholinesterases (acetylcholinesterase; AChE; butyryl cholinesterase; BChE), tyrosinase, α-amylase, and α-glucosidase. Lettuce treated with HES + CGA under non-stress conditions exhibited the strongest inhibition against AChE and BChE, while the same treatment under salinity conditions resulted in the highest inhibition capacity against α-amylase. Additionally, CGA under non-stress conditions exhibited the best inhibitory effect against tyrosinase. All the functional traits investigated were significantly modulated by exogenous phenolics, salinity, and their combination. In more detail, flavonoids, lignans, and stilbenes were the most affected phenolics, whereas glycosidase enzymes and tyrosinase activity were the most affected among enzyme assays. In conclusion, the exogenous application of phenolics to lettuce represents an effective and green strategy to effectively modulate the phenolic profile, antioxidant activity, and enzyme inhibitory effects in lettuce, deserving future application to produce functional plant-based foods in a sustainable way. |
format | Online Article Text |
id | pubmed-8309431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83094312021-07-25 The Combination of Mild Salinity Conditions and Exogenously Applied Phenolics Modulates Functional Traits in Lettuce Zhang, Leilei Martinelli, Erika Senizza, Biancamaria Miras-Moreno, Begoña Yildiztugay, Evren Arikan, Busra Elbasan, Fevzi Ak, Gunes Balci, Melike Zengin, Gokhan Rouphael, Youssef Lucini, Luigi Plants (Basel) Article The quest for sustainable strategies aimed at increasing the bioactive properties of plant-based foods has grown quickly. In this work, we investigated the impact of exogenously applied phenolics, i.e., chlorogenic acid (CGA), hesperidin (HES), and their combinations (HES + CGA), on Lactuca sativa L. grown under normal- and mild-salinity conditions. To this aim, the phenolic profile, antioxidant properties, and enzyme inhibitory activity were determined. The untargeted metabolomics profiling revealed that lettuce treated with CGA under non-stressed conditions exhibited the highest total phenolic content (35.98 mg Eq./g). Lettuce samples grown under salt stress showed lower phenolic contents, except for lettuce treated with HES or HES + CGA, when comparing the same treatment between the two conditions. Furthermore, the antioxidant capacity was investigated through DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,20-azinobis-(3-ethylbenzothiazoline-6-sulfonate)), and FRAP (ferric reducing antioxidant power) assays, coupled with metal-chelating activity and phosphomolybdenum capacity. An exciting increase in radical scavenging capacity was observed in lettuce treated with exogenous phenolics, in both stress and non-stress conditions. The inhibitory activity of the samples was evaluated against target health-related enzymes, namely cholinesterases (acetylcholinesterase; AChE; butyryl cholinesterase; BChE), tyrosinase, α-amylase, and α-glucosidase. Lettuce treated with HES + CGA under non-stress conditions exhibited the strongest inhibition against AChE and BChE, while the same treatment under salinity conditions resulted in the highest inhibition capacity against α-amylase. Additionally, CGA under non-stress conditions exhibited the best inhibitory effect against tyrosinase. All the functional traits investigated were significantly modulated by exogenous phenolics, salinity, and their combination. In more detail, flavonoids, lignans, and stilbenes were the most affected phenolics, whereas glycosidase enzymes and tyrosinase activity were the most affected among enzyme assays. In conclusion, the exogenous application of phenolics to lettuce represents an effective and green strategy to effectively modulate the phenolic profile, antioxidant activity, and enzyme inhibitory effects in lettuce, deserving future application to produce functional plant-based foods in a sustainable way. MDPI 2021-07-16 /pmc/articles/PMC8309431/ /pubmed/34371660 http://dx.doi.org/10.3390/plants10071457 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Leilei Martinelli, Erika Senizza, Biancamaria Miras-Moreno, Begoña Yildiztugay, Evren Arikan, Busra Elbasan, Fevzi Ak, Gunes Balci, Melike Zengin, Gokhan Rouphael, Youssef Lucini, Luigi The Combination of Mild Salinity Conditions and Exogenously Applied Phenolics Modulates Functional Traits in Lettuce |
title | The Combination of Mild Salinity Conditions and Exogenously Applied Phenolics Modulates Functional Traits in Lettuce |
title_full | The Combination of Mild Salinity Conditions and Exogenously Applied Phenolics Modulates Functional Traits in Lettuce |
title_fullStr | The Combination of Mild Salinity Conditions and Exogenously Applied Phenolics Modulates Functional Traits in Lettuce |
title_full_unstemmed | The Combination of Mild Salinity Conditions and Exogenously Applied Phenolics Modulates Functional Traits in Lettuce |
title_short | The Combination of Mild Salinity Conditions and Exogenously Applied Phenolics Modulates Functional Traits in Lettuce |
title_sort | combination of mild salinity conditions and exogenously applied phenolics modulates functional traits in lettuce |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309431/ https://www.ncbi.nlm.nih.gov/pubmed/34371660 http://dx.doi.org/10.3390/plants10071457 |
work_keys_str_mv | AT zhangleilei thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT martinellierika thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT senizzabiancamaria thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT mirasmorenobegona thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT yildiztugayevren thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT arikanbusra thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT elbasanfevzi thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT akgunes thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT balcimelike thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT zengingokhan thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT rouphaelyoussef thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT luciniluigi thecombinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT zhangleilei combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT martinellierika combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT senizzabiancamaria combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT mirasmorenobegona combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT yildiztugayevren combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT arikanbusra combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT elbasanfevzi combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT akgunes combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT balcimelike combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT zengingokhan combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT rouphaelyoussef combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce AT luciniluigi combinationofmildsalinityconditionsandexogenouslyappliedphenolicsmodulatesfunctionaltraitsinlettuce |