Cargando…

Interval State Estimation in Active Distribution Systems Considering Multiple Uncertainties

Distribution system state estimation (DSSE) plays a significant role for the system operation management and control. Due to the multiple uncertainties caused by the non-Gaussian measurement noise, inaccurate line parameters, stochastic power outputs of distributed generations (DG), and plug-in elec...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Tengpeng, Ren, He, Amaratunga, Gehan A. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309476/
https://www.ncbi.nlm.nih.gov/pubmed/34300384
http://dx.doi.org/10.3390/s21144644
Descripción
Sumario:Distribution system state estimation (DSSE) plays a significant role for the system operation management and control. Due to the multiple uncertainties caused by the non-Gaussian measurement noise, inaccurate line parameters, stochastic power outputs of distributed generations (DG), and plug-in electric vehicles (EV) in distribution systems, the existing interval state estimation (ISE) approaches for DSSE provide fairly conservative estimation results. In this paper, a new ISE model is proposed for distribution systems where the multiple uncertainties mentioned above are well considered and accurately established. Moreover, a modified Krawczyk-operator (MKO) in conjunction with interval constraint-propagation (ICP) algorithm is proposed to solve the ISE problem and efficiently provides better estimation results with less conservativeness. Simulation results carried out on the IEEE 33-bus, 69-bus, and 123-bus distribution systems show that the our proposed algorithm can provide tighter upper and lower bounds of state estimation results than the existing approaches such as the ICP, Krawczyk-Moore ICP(KM-ICP), Hansen, and MKO.