Cargando…

Fully Learnable Model for Task-Driven Image Compressed Sensing

This study primarily investigates image sensing at low sampling rates with convolutional neural networks (CNN) for specific applications. To improve the image acquisition efficiency in energy-limited systems, this study, inspired by compressed sensing, proposes a fully learnable model for task-drive...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Bowen, Zhang, Jianping, Sun, Guiling, Ren, Xiangnan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309481/
https://www.ncbi.nlm.nih.gov/pubmed/34300400
http://dx.doi.org/10.3390/s21144662
Descripción
Sumario:This study primarily investigates image sensing at low sampling rates with convolutional neural networks (CNN) for specific applications. To improve the image acquisition efficiency in energy-limited systems, this study, inspired by compressed sensing, proposes a fully learnable model for task-driven image-compressed sensing (FLCS). The FLCS, based on Deep Convolution Generative Adversarial Networks (DCGAN) and Variational Auto-encoder (VAE), divides the image-compressed sensing model into three learnable parts, i.e., the Sampler, the Solver and the Rebuilder. To be specific, a measurement matrix suitable for a type of image is obtained by training the Sampler. The Solver calculates the image’s low-dimensional representation with the measurements. The Rebuilder learns a mapping from the low-dimensional latent space to the image space. All the mentioned could be trained jointly or individually for a range of application scenarios. The pre-trained FLCS reconstructs images with few iterations for task-driven compressed sensing. As indicated from the experimental results, compared with existing approaches, the proposed method could significantly improve the reconstructed images’ quality while decreasing the running time. This study is of great significance for the application of image-compressed sensing at low sampling rates.