Cargando…
Fully Learnable Model for Task-Driven Image Compressed Sensing
This study primarily investigates image sensing at low sampling rates with convolutional neural networks (CNN) for specific applications. To improve the image acquisition efficiency in energy-limited systems, this study, inspired by compressed sensing, proposes a fully learnable model for task-drive...
Autores principales: | Zheng, Bowen, Zhang, Jianping, Sun, Guiling, Ren, Xiangnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309481/ https://www.ncbi.nlm.nih.gov/pubmed/34300400 http://dx.doi.org/10.3390/s21144662 |
Ejemplares similares
-
Research on Image Reconstruction of Compressed Sensing Based on a Multi-Feature Residual Network
por: Nan, Ruili, et al.
Publicado: (2020) -
Intelligent Electromagnetic Sensing with Learnable Data Acquisition and Processing
por: Li, Hao-Yang, et al.
Publicado: (2020) -
Deep Learnability: Using Neural Networks to Quantify Language Similarity and Learnability
por: Cohen, Clara, et al.
Publicado: (2020) -
Fully learnable deep wavelet transform for unsupervised monitoring of high-frequency time series
por: Michau, Gabriel, et al.
Publicado: (2022) -
Learnability for the Information Bottleneck
por: Wu, Tailin, et al.
Publicado: (2019)