Cargando…
Domain Adaptation for Imitation Learning Using Generative Adversarial Network
Imitation learning is an effective approach for an autonomous agent to learn control policies when an explicit reward function is unavailable, using demonstrations provided from an expert. However, standard imitation learning methods assume that the agents and the demonstrations provided by the expe...
Autores principales: | Nguyen Duc, Tho, Tran, Chanh Minh, Tan, Phan Xuan, Kamioka, Eiji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309483/ https://www.ncbi.nlm.nih.gov/pubmed/34300456 http://dx.doi.org/10.3390/s21144718 |
Ejemplares similares
-
Repetition-Based Approach for Task Adaptation in Imitation Learning
por: Nguyen Duc, Tho, et al.
Publicado: (2022) -
Novel Projection Schemes for Graph-Based Light Field Coding
por: Bach, Nguyen Gia, et al.
Publicado: (2022) -
Modeling Car-Following Behaviors and Driving Styles with Generative Adversarial Imitation Learning
por: Zhou, Yang, et al.
Publicado: (2020) -
Lipschitzness is all you need to tame off-policy generative adversarial imitation learning
por: Blondé, Lionel, et al.
Publicado: (2022) -
Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks
por: Wang, Xiaoqing, et al.
Publicado: (2018)