Cargando…
EagleEye: A Worldwide Disease-Related Topic Extraction System Using a Deep Learning Based Ranking Algorithm and Internet-Sourced Data
Due to the prevalence of globalization and the surge in people’s traffic, diseases are spreading more rapidly than ever and the risks of sporadic contamination are becoming higher than before. Disease warnings continue to rely on censored data, but these warning systems have failed to cope with the...
Autores principales: | Jang, Beakcheol, Kim, Myeonghwi, Kim, Inhwan, Kim, Jong Wook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309494/ https://www.ncbi.nlm.nih.gov/pubmed/34300403 http://dx.doi.org/10.3390/s21144665 |
Ejemplares similares
-
DiTeX: Disease-related topic extraction system through internet-based sources
por: Yoon, Jungwon, et al.
Publicado: (2018) -
Effective Training Data Extraction Method to Improve Influenza Outbreak Prediction from Online News Articles: Deep Learning Model Study
por: Jang, Beakcheol, et al.
Publicado: (2021) -
Word2vec convolutional neural networks for classification of news articles and tweets
por: Jang, Beakcheol, et al.
Publicado: (2019) -
IPSCL: An Accurate Indoor Positioning Algorithm Using Sensors and Crowdsourced Landmarks
por: Jang, Beakcheol, et al.
Publicado: (2019) -
Eagle eyed or bird brained?
por: Williams, David
Publicado: (2023)