Cargando…
Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI)
Urban vegetation mapping is critical in many applications, i.e., preserving biodiversity, maintaining ecological balance, and minimizing the urban heat island effect. It is still challenging to extract accurate vegetation covers from aerial imagery using traditional classification approaches, becaus...
Autores principales: | Abdollahi, Abolfazl, Pradhan, Biswajeet |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309506/ https://www.ncbi.nlm.nih.gov/pubmed/34300478 http://dx.doi.org/10.3390/s21144738 |
Ejemplares similares
-
Earthquake-Induced Building-Damage Mapping Using Explainable AI (XAI)
por: Matin, Sahar S., et al.
Publicado: (2021) -
Hands-On Explainable AI (XAI) with Python
por: Rothman, Denis
Publicado: (2020) -
Unboxing Deep Learning Model of Food Delivery Service Reviews Using Explainable Artificial Intelligence (XAI) Technique
por: Adak, Anirban, et al.
Publicado: (2022) -
XAI-FR: Explainable AI-Based Face Recognition Using Deep Neural Networks
por: Rajpal, Ankit, et al.
Publicado: (2022) -
A Survey on Medical Explainable AI (XAI): Recent Progress, Explainability Approach, Human Interaction and Scoring System
por: Sheu, Ruey-Kai, et al.
Publicado: (2022)