Cargando…
Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources
Parameter identification of permanent magnet synchronous machines (PMSMs) represents a well-established research area. However, parameter estimation of multiple running machines in large-scale applications has not yet been investigated. In this context, a flexible and automated approach is required...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309523/ https://www.ncbi.nlm.nih.gov/pubmed/34300439 http://dx.doi.org/10.3390/s21144699 |
_version_ | 1783728541649600512 |
---|---|
author | Brescia, Elia Costantino, Donatello Marzo, Federico Massenio, Paolo Roberto Cascella, Giuseppe Leonardo Naso, David |
author_facet | Brescia, Elia Costantino, Donatello Marzo, Federico Massenio, Paolo Roberto Cascella, Giuseppe Leonardo Naso, David |
author_sort | Brescia, Elia |
collection | PubMed |
description | Parameter identification of permanent magnet synchronous machines (PMSMs) represents a well-established research area. However, parameter estimation of multiple running machines in large-scale applications has not yet been investigated. In this context, a flexible and automated approach is required to minimize complexity, costs, and human interventions without requiring machine information. This paper proposes a novel identification strategy for surface PMSMs (SPMSMs), highly suitable for large-scale systems. A novel multistep approach using measurement data at different operating conditions of the SPMSM is proposed to perform the parameter identification without requiring signal injection, extra sensors, machine information, and human interventions. Thus, the proposed method overcomes numerous issues of the existing parameter identification schemes. An IoT/cloud architecture is designed to implement the proposed multistep procedure and massively perform SPMSM parameter identifications. Finally, hardware-in-the-loop results show the effectiveness of the proposed approach. |
format | Online Article Text |
id | pubmed-8309523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83095232021-07-25 Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources Brescia, Elia Costantino, Donatello Marzo, Federico Massenio, Paolo Roberto Cascella, Giuseppe Leonardo Naso, David Sensors (Basel) Article Parameter identification of permanent magnet synchronous machines (PMSMs) represents a well-established research area. However, parameter estimation of multiple running machines in large-scale applications has not yet been investigated. In this context, a flexible and automated approach is required to minimize complexity, costs, and human interventions without requiring machine information. This paper proposes a novel identification strategy for surface PMSMs (SPMSMs), highly suitable for large-scale systems. A novel multistep approach using measurement data at different operating conditions of the SPMSM is proposed to perform the parameter identification without requiring signal injection, extra sensors, machine information, and human interventions. Thus, the proposed method overcomes numerous issues of the existing parameter identification schemes. An IoT/cloud architecture is designed to implement the proposed multistep procedure and massively perform SPMSM parameter identifications. Finally, hardware-in-the-loop results show the effectiveness of the proposed approach. MDPI 2021-07-09 /pmc/articles/PMC8309523/ /pubmed/34300439 http://dx.doi.org/10.3390/s21144699 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Brescia, Elia Costantino, Donatello Marzo, Federico Massenio, Paolo Roberto Cascella, Giuseppe Leonardo Naso, David Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources |
title | Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources |
title_full | Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources |
title_fullStr | Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources |
title_full_unstemmed | Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources |
title_short | Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources |
title_sort | automated multistep parameter identification of spmsms in large-scale applications using cloud computing resources |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309523/ https://www.ncbi.nlm.nih.gov/pubmed/34300439 http://dx.doi.org/10.3390/s21144699 |
work_keys_str_mv | AT bresciaelia automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources AT costantinodonatello automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources AT marzofederico automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources AT masseniopaoloroberto automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources AT cascellagiuseppeleonardo automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources AT nasodavid automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources |