Cargando…

Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources

Parameter identification of permanent magnet synchronous machines (PMSMs) represents a well-established research area. However, parameter estimation of multiple running machines in large-scale applications has not yet been investigated. In this context, a flexible and automated approach is required...

Descripción completa

Detalles Bibliográficos
Autores principales: Brescia, Elia, Costantino, Donatello, Marzo, Federico, Massenio, Paolo Roberto, Cascella, Giuseppe Leonardo, Naso, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309523/
https://www.ncbi.nlm.nih.gov/pubmed/34300439
http://dx.doi.org/10.3390/s21144699
_version_ 1783728541649600512
author Brescia, Elia
Costantino, Donatello
Marzo, Federico
Massenio, Paolo Roberto
Cascella, Giuseppe Leonardo
Naso, David
author_facet Brescia, Elia
Costantino, Donatello
Marzo, Federico
Massenio, Paolo Roberto
Cascella, Giuseppe Leonardo
Naso, David
author_sort Brescia, Elia
collection PubMed
description Parameter identification of permanent magnet synchronous machines (PMSMs) represents a well-established research area. However, parameter estimation of multiple running machines in large-scale applications has not yet been investigated. In this context, a flexible and automated approach is required to minimize complexity, costs, and human interventions without requiring machine information. This paper proposes a novel identification strategy for surface PMSMs (SPMSMs), highly suitable for large-scale systems. A novel multistep approach using measurement data at different operating conditions of the SPMSM is proposed to perform the parameter identification without requiring signal injection, extra sensors, machine information, and human interventions. Thus, the proposed method overcomes numerous issues of the existing parameter identification schemes. An IoT/cloud architecture is designed to implement the proposed multistep procedure and massively perform SPMSM parameter identifications. Finally, hardware-in-the-loop results show the effectiveness of the proposed approach.
format Online
Article
Text
id pubmed-8309523
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-83095232021-07-25 Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources Brescia, Elia Costantino, Donatello Marzo, Federico Massenio, Paolo Roberto Cascella, Giuseppe Leonardo Naso, David Sensors (Basel) Article Parameter identification of permanent magnet synchronous machines (PMSMs) represents a well-established research area. However, parameter estimation of multiple running machines in large-scale applications has not yet been investigated. In this context, a flexible and automated approach is required to minimize complexity, costs, and human interventions without requiring machine information. This paper proposes a novel identification strategy for surface PMSMs (SPMSMs), highly suitable for large-scale systems. A novel multistep approach using measurement data at different operating conditions of the SPMSM is proposed to perform the parameter identification without requiring signal injection, extra sensors, machine information, and human interventions. Thus, the proposed method overcomes numerous issues of the existing parameter identification schemes. An IoT/cloud architecture is designed to implement the proposed multistep procedure and massively perform SPMSM parameter identifications. Finally, hardware-in-the-loop results show the effectiveness of the proposed approach. MDPI 2021-07-09 /pmc/articles/PMC8309523/ /pubmed/34300439 http://dx.doi.org/10.3390/s21144699 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Brescia, Elia
Costantino, Donatello
Marzo, Federico
Massenio, Paolo Roberto
Cascella, Giuseppe Leonardo
Naso, David
Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources
title Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources
title_full Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources
title_fullStr Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources
title_full_unstemmed Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources
title_short Automated Multistep Parameter Identification of SPMSMs in Large-Scale Applications Using Cloud Computing Resources
title_sort automated multistep parameter identification of spmsms in large-scale applications using cloud computing resources
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309523/
https://www.ncbi.nlm.nih.gov/pubmed/34300439
http://dx.doi.org/10.3390/s21144699
work_keys_str_mv AT bresciaelia automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources
AT costantinodonatello automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources
AT marzofederico automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources
AT masseniopaoloroberto automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources
AT cascellagiuseppeleonardo automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources
AT nasodavid automatedmultistepparameteridentificationofspmsmsinlargescaleapplicationsusingcloudcomputingresources