Cargando…
Constrained Multiple Planar Reconstruction for Automatic Camera Calibration of Intelligent Vehicles
In intelligent vehicles, extrinsic camera calibration is preferable to be conducted on a regular basis to deal with unpredictable mechanical changes or variations on weight load distribution. Specifically, high-precision extrinsic parameters between the camera coordinate and the world coordinate are...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309555/ https://www.ncbi.nlm.nih.gov/pubmed/34300383 http://dx.doi.org/10.3390/s21144643 |
Sumario: | In intelligent vehicles, extrinsic camera calibration is preferable to be conducted on a regular basis to deal with unpredictable mechanical changes or variations on weight load distribution. Specifically, high-precision extrinsic parameters between the camera coordinate and the world coordinate are essential to implement high-level functions in intelligent vehicles such as distance estimation and lane departure warning. However, conventional calibration methods, which solve a Perspective-n-Point problem, require laborious work to measure the positions of 3D points in the world coordinate. To reduce this inconvenience, this paper proposes an automatic camera calibration method based on 3D reconstruction. The main contribution of this paper is a novel reconstruction method to recover 3D points on planes perpendicular to the ground. The proposed method jointly optimizes reprojection errors of image features projected from multiple planar surfaces, and finally, it significantly reduces errors in camera extrinsic parameters. Experiments were conducted in synthetic simulation and real calibration environments to demonstrate the effectiveness of the proposed method. |
---|