Cargando…
The Performance of Post-Fall Detection Using the Cross-Dataset: Feature Vectors, Classifiers and Processing Conditions
In this study, algorithms to detect post-falls were evaluated using the cross-dataset according to feature vectors (time-series and discrete data), classifiers (ANN and SVM), and four different processing conditions (normalization, equalization, increase in the number of training data, and additiona...
Autores principales: | Koo, Bummo, Kim, Jongman, Nam, Yejin, Kim, Youngho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309569/ https://www.ncbi.nlm.nih.gov/pubmed/34300378 http://dx.doi.org/10.3390/s21144638 |
Ejemplares similares
-
sEMG-Based Hand Posture Recognition Considering Electrode Shift, Feature Vectors, and Posture Groups
por: Kim, Jongman, et al.
Publicado: (2021) -
Enhanced Algorithm for the Detection of Preimpact Fall for Wearable Airbags
por: Jung, Haneul, et al.
Publicado: (2020) -
Evaluation of Inertial Sensor-Based Pre-Impact Fall Detection Algorithms Using Public Dataset
por: Ahn, Soonjae, et al.
Publicado: (2019) -
Detection of Pre-Impact Falls from Heights Using an Inertial Measurement Unit Sensor
por: Kim, Youngho, et al.
Publicado: (2020) -
Fall-from-Height Detection Using Deep Learning Based on IMU Sensor Data for Accident Prevention at Construction Sites
por: Lee, Seunghee, et al.
Publicado: (2022)