Cargando…
Efficient Graph Collaborative Filtering via Contrastive Learning
Collaborative filtering (CF) aims to make recommendations for users by detecting user’s preference from the historical user–item interactions. Existing graph neural networks (GNN) based methods achieve satisfactory performance by exploiting the high-order connectivity between users and items, howeve...
Autores principales: | Pan, Zhiqiang, Chen, Honghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309583/ https://www.ncbi.nlm.nih.gov/pubmed/34300404 http://dx.doi.org/10.3390/s21144666 |
Ejemplares similares
-
CosG: A Graph-Based Contrastive Learning Method for Fact Verification
por: Chen, Chonghao, et al.
Publicado: (2021) -
MIGAN: Mutual-Interaction Graph Attention Network for Collaborative Filtering
por: Drif, Ahlem, et al.
Publicado: (2022) -
Personalized Course Recommendation System Fusing with Knowledge Graph and Collaborative Filtering
por: Xu, Gongwen, et al.
Publicado: (2021) -
GATCF: Graph Attention Collaborative Filtering for Reliable Blockchain Services Selection in BaaS
por: Zeng, Yuxiang, et al.
Publicado: (2023) -
Filtered pose graph for efficient kinect pose reconstruction
por: Plantard, Pierre, et al.
Publicado: (2016)