Cargando…
Impact of Visual Design Elements and Principles in Human Electroencephalogram Brain Activity Assessed with Spectral Methods and Convolutional Neural Networks
The visual design elements and principles (VDEPs) can trigger behavioural changes and emotions in the viewer, but their effects on brain activity are not clearly understood. In this paper, we explore the relationships between brain activity and colour (cold/warm), light (dark/bright), movement (fast...
Autores principales: | Cabrera, Francisco E., Sánchez-Núñez, Pablo, Vaccaro, Gustavo, Peláez, José Ignacio, Escudero, Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309592/ https://www.ncbi.nlm.nih.gov/pubmed/34300436 http://dx.doi.org/10.3390/s21144695 |
Ejemplares similares
-
Identifying Amnestic Mild Cognitive Impairment With Convolutional Neural Network Adapted to the Spectral Entropy Heat Map of the Electroencephalogram
por: Li, Xin, et al.
Publicado: (2022) -
Miner Fatigue Detection from Electroencephalogram-Based Relative Power Spectral Topography Using Convolutional Neural Network
por: Xu, Lili, et al.
Publicado: (2023) -
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
por: Gao, Yunyuan, et al.
Publicado: (2020) -
A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification
por: Altuwaijri, Ghadir Ali, et al.
Publicado: (2022) -
Exploiting Graphoelements and Convolutional Neural Networks with Long Short Term Memory for Classification of the Human Electroencephalogram
por: Nejedly, P., et al.
Publicado: (2019)