Cargando…
Convolution Network with Custom Loss Function for the Denoising of Low SNR Raman Spectra †
Raman spectroscopy is a powerful diagnostic tool in biomedical science, whereby different disease groups can be classified based on subtle differences in the cell or tissue spectra. A key component in the classification of Raman spectra is the application of multi-variate statistical models. However...
Autores principales: | Barton, Sinead, Alakkari, Salaheddin, O’Dwyer, Kevin, Ward, Tomas, Hennelly, Bryan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309607/ https://www.ncbi.nlm.nih.gov/pubmed/34300363 http://dx.doi.org/10.3390/s21144623 |
Ejemplares similares
-
Automated Raman Micro-Spectroscopy of Epithelial Cell Nuclei for High-Throughput Classification
por: O’Dwyer, Kevin, et al.
Publicado: (2021) -
Deep learning approach for denoising low-SNR correlation plenoptic images
por: Scattarella, Francesco, et al.
Publicado: (2023) -
Dense Convolutional Neural Network for Identification of Raman Spectra
por: Zhou, Wei, et al.
Publicado: (2023) -
Deeply-recursive convolutional neural network for Raman spectra identification
por: Zhou, Wei, et al.
Publicado: (2022) -
RamanNet: a lightweight convolutional neural network for bacterial identification based on Raman spectra
por: Zhou, Bo, et al.
Publicado: (2022)