Cargando…

Compact Slotted Waveguide Antenna Array Using Staircase Model of Tapered Dielectric-Inset Guide for Shipboard Marine Radar

This paper presents a new configuration of a slotted waveguide antenna (SWA) array aimed at the X-band within the desired band of 9.38~9.44 GHz for shipboard marine radars. The SWA array, which typically consists of a slotted waveguide, a polarizing filter, and a metal reflector, is widely employed...

Descripción completa

Detalles Bibliográficos
Autores principales: Anim, Kyei, Diawuo, Henry Abu, Jung, Young-Bae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309608/
https://www.ncbi.nlm.nih.gov/pubmed/34300486
http://dx.doi.org/10.3390/s21144745
Descripción
Sumario:This paper presents a new configuration of a slotted waveguide antenna (SWA) array aimed at the X-band within the desired band of 9.38~9.44 GHz for shipboard marine radars. The SWA array, which typically consists of a slotted waveguide, a polarizing filter, and a metal reflector, is widely employed in marine radar applications. Nonetheless, conventional slot array designs are weighty, mechanically complex, and geometrically large to obtain high performances, such as gain. These features of the conventional SWA are undesirable for the shipboard marine radar, where the antenna rotates at high angular speed for the beam scanning mechanism. The proposed SWA array herein reduces the conventional design’s size by 62% using a tapered dielectric-inset guide structure. It shows high gain performance (up to 30 dB) and obtains improvements in radiation efficiency (up to 80% in the numerical simulations) and weight due to the use of loss and low-density dielectric material.