Cargando…
Classical Machine Learning Versus Deep Learning for the Older Adults Free-Living Activity Classification
Physical activity has a strong influence on mental and physical health and is essential in healthy ageing and wellbeing for the ever-growing elderly population. Wearable sensors can provide a reliable and economical measure of activities of daily living (ADLs) by capturing movements through, e.g., a...
Autores principales: | Awais, Muhammad, Chiari, Lorenzo, Ihlen, Espen A. F., Helbostad, Jorunn L., Palmerini, Luca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309623/ https://www.ncbi.nlm.nih.gov/pubmed/34300409 http://dx.doi.org/10.3390/s21144669 |
Ejemplares similares
-
Performance Evaluation of State of the Art Systems for Physical Activity Classification of Older Subjects Using Inertial Sensors in a Real Life Scenario: A Benchmark Study
por: Awais, Muhammad, et al.
Publicado: (2016) -
The Discriminant Value of Phase-Dependent Local Dynamic Stability of Daily Life Walking in Older Adult Community-Dwelling Fallers and Nonfallers
por: Ihlen, Espen A. F., et al.
Publicado: (2015) -
Accelerometer-Based Fall Detection Using Machine Learning: Training and Testing on Real-World Falls
por: Palmerini, Luca, et al.
Publicado: (2020) -
Exergaming in Older Adults: Movement Characteristics While Playing Stepping Games
por: Skjæret-Maroni, Nina, et al.
Publicado: (2016) -
A Physical Activity Reference Data-Set Recorded from Older Adults Using Body-Worn Inertial Sensors and Video Technology—The ADAPT Study Data-Set
por: Bourke, Alan Kevin, et al.
Publicado: (2017)