Cargando…
Efficient FPGA Implementation of a Dual-Frequency GNSS Receiver with Robust Inter-Frequency Aiding
Multiple frequency global navigation satellite system (GNSS) has become more complex due to the existence of extra channels. Typically, auxiliary methods are used to synchronize the second signals at other bands by aiding the acquired channel parameters. However, there are critical limitations becau...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309637/ https://www.ncbi.nlm.nih.gov/pubmed/34300375 http://dx.doi.org/10.3390/s21144634 |
_version_ | 1783728568733270016 |
---|---|
author | Huang, Kuan-Ying Juang, Jyh-Ching Tsai, Yung-Fu Lin, Chen-Tsung |
author_facet | Huang, Kuan-Ying Juang, Jyh-Ching Tsai, Yung-Fu Lin, Chen-Tsung |
author_sort | Huang, Kuan-Ying |
collection | PubMed |
description | Multiple frequency global navigation satellite system (GNSS) has become more complex due to the existence of extra channels. Typically, auxiliary methods are used to synchronize the second signals at other bands by aiding the acquired channel parameters. However, there are critical limitations because the reception of GNSS signals is subject to uncertainties due to noise carrier injection or circuit interference. The relationship between the two Doppler frequencies can be affected by uncertainties. Therefore, we aimed to implement an efficient dual-frequency field-programmable gate array (FPGA), performing a direct aid tracking method for the secondary channel to achieve resource efficiency and inner aid robustness. A robust estimator that directly links two loops in the two bands is proposed. In this scheme, (1) a robust estimator able to cope with uncertainty; (2) a primary tracking scheme to obtain the error boundary, and (3) a tracked bit-boundary for the initial code phase of the second channel are used. Based on experiments on the FPGA, the robust channel link can achieve direct aid tracking, and 31.02% of the original hardware resources from the aided acquisition module were released satisfactorily. |
format | Online Article Text |
id | pubmed-8309637 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-83096372021-07-25 Efficient FPGA Implementation of a Dual-Frequency GNSS Receiver with Robust Inter-Frequency Aiding Huang, Kuan-Ying Juang, Jyh-Ching Tsai, Yung-Fu Lin, Chen-Tsung Sensors (Basel) Article Multiple frequency global navigation satellite system (GNSS) has become more complex due to the existence of extra channels. Typically, auxiliary methods are used to synchronize the second signals at other bands by aiding the acquired channel parameters. However, there are critical limitations because the reception of GNSS signals is subject to uncertainties due to noise carrier injection or circuit interference. The relationship between the two Doppler frequencies can be affected by uncertainties. Therefore, we aimed to implement an efficient dual-frequency field-programmable gate array (FPGA), performing a direct aid tracking method for the secondary channel to achieve resource efficiency and inner aid robustness. A robust estimator that directly links two loops in the two bands is proposed. In this scheme, (1) a robust estimator able to cope with uncertainty; (2) a primary tracking scheme to obtain the error boundary, and (3) a tracked bit-boundary for the initial code phase of the second channel are used. Based on experiments on the FPGA, the robust channel link can achieve direct aid tracking, and 31.02% of the original hardware resources from the aided acquisition module were released satisfactorily. MDPI 2021-07-06 /pmc/articles/PMC8309637/ /pubmed/34300375 http://dx.doi.org/10.3390/s21144634 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Huang, Kuan-Ying Juang, Jyh-Ching Tsai, Yung-Fu Lin, Chen-Tsung Efficient FPGA Implementation of a Dual-Frequency GNSS Receiver with Robust Inter-Frequency Aiding |
title | Efficient FPGA Implementation of a Dual-Frequency GNSS Receiver with Robust Inter-Frequency Aiding |
title_full | Efficient FPGA Implementation of a Dual-Frequency GNSS Receiver with Robust Inter-Frequency Aiding |
title_fullStr | Efficient FPGA Implementation of a Dual-Frequency GNSS Receiver with Robust Inter-Frequency Aiding |
title_full_unstemmed | Efficient FPGA Implementation of a Dual-Frequency GNSS Receiver with Robust Inter-Frequency Aiding |
title_short | Efficient FPGA Implementation of a Dual-Frequency GNSS Receiver with Robust Inter-Frequency Aiding |
title_sort | efficient fpga implementation of a dual-frequency gnss receiver with robust inter-frequency aiding |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309637/ https://www.ncbi.nlm.nih.gov/pubmed/34300375 http://dx.doi.org/10.3390/s21144634 |
work_keys_str_mv | AT huangkuanying efficientfpgaimplementationofadualfrequencygnssreceiverwithrobustinterfrequencyaiding AT juangjyhching efficientfpgaimplementationofadualfrequencygnssreceiverwithrobustinterfrequencyaiding AT tsaiyungfu efficientfpgaimplementationofadualfrequencygnssreceiverwithrobustinterfrequencyaiding AT linchentsung efficientfpgaimplementationofadualfrequencygnssreceiverwithrobustinterfrequencyaiding |