Cargando…
Towards Lifespan Automation for Caenorhabditis elegans Based on Deep Learning: Analysing Convolutional and Recurrent Neural Networks for Dead or Live Classification
The automation of lifespan assays with C. elegans in standard Petri dishes is a challenging problem because there are several problems hindering detection such as occlusions at the plate edges, dirt accumulation, and worm aggregations. Moreover, determining whether a worm is alive or dead can be com...
Autores principales: | García Garví, Antonio, Puchalt, Joan Carles, Layana Castro, Pablo E., Navarro Moya, Francisco, Sánchez-Salmerón, Antonio-José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309694/ https://www.ncbi.nlm.nih.gov/pubmed/34300683 http://dx.doi.org/10.3390/s21144943 |
Ejemplares similares
-
Automation of Caenorhabditis elegans lifespan assay using a simplified domain synthetic image-based neural network training strategy
por: García-Garví, Antonio, et al.
Publicado: (2023) -
Caenorhabditis elegans Multi-Tracker Based on a Modified Skeleton Algorithm
por: Layana Castro, Pablo E., et al.
Publicado: (2021) -
Reducing Results Variance in Lifespan Machines: An Analysis of the Influence of Vibrotaxis on Wild-Type Caenorhabditis elegans for the Death Criterion
por: Puchalt, Joan Carles, et al.
Publicado: (2020) -
Improving skeleton algorithm for helping Caenorhabditis elegans trackers
por: Layana Castro, Pablo E., et al.
Publicado: (2020) -
Small flexible automated system for monitoring Caenorhabditis elegans lifespan based on active vision and image processing techniques
por: Puchalt, Joan Carles, et al.
Publicado: (2021)