Cargando…
Deep ConvNet: Non-Random Weight Initialization for Repeatable Determinism, Examined with FSGM †
A repeatable and deterministic non-random weight initialization method in convolutional layers of neural networks examined with the Fast Gradient Sign Method (FSGM). Using the FSGM approach as a technique to measure the initialization effect with controlled distortions in transferred learning, varyi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309697/ https://www.ncbi.nlm.nih.gov/pubmed/34300512 http://dx.doi.org/10.3390/s21144772 |