Cargando…
Deep ConvNet: Non-Random Weight Initialization for Repeatable Determinism, Examined with FSGM †
A repeatable and deterministic non-random weight initialization method in convolutional layers of neural networks examined with the Fast Gradient Sign Method (FSGM). Using the FSGM approach as a technique to measure the initialization effect with controlled distortions in transferred learning, varyi...
Autores principales: | Rudd-Orthner, Richard N. M., Mihaylova, Lyudmila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309697/ https://www.ncbi.nlm.nih.gov/pubmed/34300512 http://dx.doi.org/10.3390/s21144772 |
Ejemplares similares
-
Enhancement of Patient Facial Recognition through Deep Learning Algorithm: ConvNet
por: Onyema, Edeh Michael, et al.
Publicado: (2021) -
Incep-EEGNet: A ConvNet for Motor Imagery Decoding
por: Riyad, Mouad, et al.
Publicado: (2020) -
PCA driven mixed filter pruning for efficient convNets
por: Ahmed, Waqas, et al.
Publicado: (2022) -
Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing Its Gradient Estimator Bias
por: Laborieux, Axel, et al.
Publicado: (2021) -
ConvNet and LSH-Based Visual Localization Using Localized Sequence Matching †
por: Qiao, Yongliang, et al.
Publicado: (2019)