Cargando…

Negative Index Metamaterial Lens for Subwavelength Microwave Detection

Metamaterials are engineered periodic structures designed to have unique properties not encountered in naturally occurring materials. One such unusual property of metamaterials is the ability to exhibit negative refractive index over a prescribed range of frequencies. A lens made of negative refract...

Descripción completa

Detalles Bibliográficos
Autores principales: Datta, Srijan, Mukherjee, Saptarshi, Shi, Xiaodong, Haq, Mahmood, Deng, Yiming, Udpa, Lalita, Rothwell, Edward
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309723/
https://www.ncbi.nlm.nih.gov/pubmed/34300520
http://dx.doi.org/10.3390/s21144782
Descripción
Sumario:Metamaterials are engineered periodic structures designed to have unique properties not encountered in naturally occurring materials. One such unusual property of metamaterials is the ability to exhibit negative refractive index over a prescribed range of frequencies. A lens made of negative refractive index metamaterials can achieve resolution beyond the diffraction limit. This paper presents the design of a metamaterial lens and its use in far-field microwave imaging for subwavelength defect detection in nondestructive evaluation (NDE). Theoretical formulation and numerical studies of the metamaterial lens design are presented followed by experimental demonstration and characterization of metamaterial behavior. Finally, a microwave homodyne receiver-based system is used in conjunction with the metamaterial lens to develop a far-field microwave NDE sensor system. A subwavelength focal spot of size 0.82λ was obtained. The system is shown to be sensitive to a defect of size 0.17λ × 0.06λ in a Teflon sample. Consecutive positions of the defect with a separation of 0.23λ was resolvable using the proposed system.