Cargando…
Blur Kernel Estimation and Non-Blind Super-Resolution for Power Equipment Infrared Images by Compressed Sensing and Adaptive Regularization
Infrared sensing technology is more and more widely used in the construction of power Internet of Things. However, due to cost constraints, it is difficult to achieve the large-scale installation of high-precision infrared sensors. Therefore, we propose a blind super-resolution method for infrared i...
Autores principales: | Zhao, Hongshan, Liu, Bingcong, Wang, Lingjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309741/ https://www.ncbi.nlm.nih.gov/pubmed/34300560 http://dx.doi.org/10.3390/s21144820 |
Ejemplares similares
-
Research on Blind Super-Resolution Technology for Infrared Images of Power Equipment Based on Compressed Sensing Theory
por: Wang, Yan, et al.
Publicado: (2021) -
Infrared Image Super Resolution by Combining Compressive Sensing and Deep Learning
por: Zhang, Xudong, et al.
Publicado: (2018) -
Hyperspectral Imagery Super-Resolution by Compressive Sensing Inspired Dictionary Learning and Spatial-Spectral Regularization
por: Huang, Wei, et al.
Publicado: (2015) -
Hyperspectral Imagery Super-Resolution by Adaptive POCS and Blur Metric
por: Hu, Shaoxing, et al.
Publicado: (2017) -
A Dynamic Convolution Kernel Generation Method Based on Regularized Pattern for Image Super-Resolution
por: Feng, Hesen, et al.
Publicado: (2022)