Cargando…
Single-Channel Blind Source Separation of Spatial Aliasing Signal Based on Stacked-LSTM
Aiming at the problem of insufficient separation accuracy of aliased signals in space Internet satellite-ground communication scenarios, a stacked long short-term memory network (Stacked-LSTM) separation method based on deep learning is proposed. First, the coding feature representation of the mixed...
Autores principales: | Zhao, Mengchen, Yao, Xiujuan, Wang, Jing, Yan, Yi, Gao, Xiang, Fan, Yanan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309757/ https://www.ncbi.nlm.nih.gov/pubmed/34300584 http://dx.doi.org/10.3390/s21144844 |
Ejemplares similares
-
Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique
por: Li, Tongyang, et al.
Publicado: (2018) -
Visual Parameter Selection for Spatial Blind Source Separation
por: Piccolotto, N., et al.
Publicado: (2022) -
Disclosing ambiguous gene aliases by automatic literature profiling
por: Coimbra, Roney S, et al.
Publicado: (2010) -
The importance of including aliases in data linkage with vulnerable populations
por: Tibble, Holly, et al.
Publicado: (2018) -
Blind Source Separation of Intermittent Frequency Hopping Sources over LOS and NLOS Channels †
por: Ghosh, Anushreya, et al.
Publicado: (2023)