Cargando…
Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach
This paper proposes a privacy-preserving energy management of a shared energy storage system (SESS) for multiple smart buildings using federated reinforcement learning (FRL). To preserve the privacy of energy scheduling of buildings connected to the SESS, we present a distributed deep reinforcement...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309780/ https://www.ncbi.nlm.nih.gov/pubmed/34300637 http://dx.doi.org/10.3390/s21144898 |