Cargando…
Privacy-Preserving Energy Management of a Shared Energy Storage System for Smart Buildings: A Federated Deep Reinforcement Learning Approach
This paper proposes a privacy-preserving energy management of a shared energy storage system (SESS) for multiple smart buildings using federated reinforcement learning (FRL). To preserve the privacy of energy scheduling of buildings connected to the SESS, we present a distributed deep reinforcement...
Autores principales: | Lee, Sangyoon, Xie, Le, Choi, Dae-Hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309780/ https://www.ncbi.nlm.nih.gov/pubmed/34300637 http://dx.doi.org/10.3390/s21144898 |
Ejemplares similares
-
Energy Management of Smart Home with Home Appliances, Energy Storage System and Electric Vehicle: A Hierarchical Deep Reinforcement Learning Approach
por: Lee, Sangyoon, et al.
Publicado: (2020) -
Reinforcement Learning-Based Energy Management of Smart Home with Rooftop Solar Photovoltaic System, Energy Storage System, and Home Appliances
por: Lee, Sangyoon, et al.
Publicado: (2019) -
Electrical energy storage for buildings in smart grids
por: Robyns, Benoît, et al.
Publicado: (2019) -
Homomorphic Encryption-Based Federated Privacy Preservation for Deep Active Learning
por: Kurniawan, Hendra, et al.
Publicado: (2022) -
On privacy-preserving protocols for smart metering systems: security and privacy in smart grids
por: Borges de Oliveira, Fábio
Publicado: (2017)