Cargando…
Analysis of Machine Learning Algorithms for Anomaly Detection on Edge Devices
The Internet of Things (IoT) consists of small devices or a network of sensors, which permanently generate huge amounts of data. Usually, they have limited resources, either computing power or memory, which means that raw data are transferred to central systems or the cloud for analysis. Lately, the...
Autores principales: | Huč, Aleks, Šalej, Jakob, Trebar, Mira |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309800/ https://www.ncbi.nlm.nih.gov/pubmed/34300686 http://dx.doi.org/10.3390/s21144946 |
Ejemplares similares
-
Hierarchical Anomaly Detection Model for In-Vehicle Networks Using Machine Learning Algorithms
por: Park, Seunghyun, et al.
Publicado: (2020) -
Anomaly Detection in Multi-Wavelength Photoplethysmography Using Lightweight Machine Learning Algorithms
por: Baciu, Vlad-Eusebiu, et al.
Publicado: (2023) -
Security provisions in smart edge computing devices using blockchain and machine learning algorithms: a novel approach
por: Mishra, Kamta Nath, et al.
Publicado: (2022) -
A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms
por: Diro, Abebe, et al.
Publicado: (2021) -
Analysis, and machine learning anomaly detection of the VELO-LHCb calibration
por: Majewski, Maciej
Publicado: (2019)